44 research outputs found

    Process-Integrated Lubrication in Sheet Metal Forming

    Get PDF
    The deep-drawability of a sheet metal blank is strongly influenced by the tribological conditions prevailing in a deep-drawing process. Therefore, new methods to influence the tribology represent an important research topic. In this work, the application of a process-integrated lubrication in a deep-drawing process is investigated. Most promising geometries of the lubrication channels and outlet openings are first identified by means of numerical simulation at the example of a demonstrator process. Cylindrical test specimens with the specified channel geometries are additively manufactured and installed in a strip drawing test stand. Additive manufacturing enables the possibility of manufacturing complex channel geometries which cannot be manufactured by conventional methods. A hydraulic metering device for conveying lubricant is connected to the cylindrical test specimens. Thus, hydraulically lubricated strip drawing tests are performed. The tests are evaluated according to the force curves and the fluid mechanical buildup of pressure cushion. The performance of process-integrated lubrication is thus analyzed and evaluated. By means of a coupled forming and SPH simulation, the lubrication channels could be optimally designed. From the practical tests, it could be achieved that the drawing force decreases up to 27% with pressure cushion build up. In this research, a hydraulic lubrication in the area of highest contact normal stresses is the most optimal process parameter regarding friction reduction

    GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium

    Get PDF
    Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations

    Numerical analyses of the influence of a counter punch during deep drawing

    Get PDF
    In the automotive sector, the demand for high crash safety and lightweight construction has led to an increased use of steels with higher strengths. However, the rising number of varying materials with different strengths and ductilities lead to an increasing complexity in productionmaking it more challenging to ensure robust processes. Therefore, the focus of current researches still lays on the further development and extension of forming processes to enable high productivity and reliable production. A powerful tool for an efficient optimisation and extension of forming processes is the Finite Element Method (FEM), which offers time-and cost saving potentials in the design phase. In deep drawing, the use of a counter punch offers the possibility oextending the process limits. By superimposing compressive stresses on the workpiece, the initiation of cracks can be delayed, thus higher drawing ratios can be achieved. The aim of this research is therefore the numerical investigation of a deep drawing process with a counter punch to analyse the influence on the crack initiation and identify optimisation potentials for the processFor this cause, the applied force as well as the position and geometry of the counter punch are varied and the influence on fracture initiation is evaluated. It is found that the applied force on the counter punch is the major influencing factor for crack initiation. Furthermore, it was concluded that the contact between the counter punch and the workpiece should be applied as soon as the bottom of the cup is shaped. A further improvement can be achieved if the counter punch is geometrically adapted to the bottom of the workpiece

    Miniaturized Laser Altimeter for Small Satellite Applications

    Get PDF
    Laser Altimetry is a powerful tool to create absolutely calibrated digital terrain maps of planetary surfaces, to analyze their surface geology, and to get insight into the interior structure of planetary bodies by measuring tidal elevations and libration amplitudes and frequencies. The recent ESA missions BepiColombo and the Jupiter Icy Moons Explorer (JUICE) carry the first European laser altimeter instruments, i.e., the BepiColombo Laser Altimeter (BELA) and the Ganymede Laser Altimeter (GALA), the latter of which has a strong contribution from JAXA teams. The measurement principle of a laser altimeter is very simple. It is based on the time-of-flight measurement of an optical pulse. BELA, which is now on the way to Mercury orbit, applies a diode-laser pumped Nd:YAG laser sending pulses with an energy of 50 mJ, a width of about 5 ns, and a repetition rate of 10 Hz. Over typical ranging distances of 400 km to more than 1000 km, the BELA telescope collects pulses with a few hundred photons and a width of about 25 ns where the time of arrival gives the mean topographic altitude of the area illuminated by the 5 to 40 m diameter laser beam. The return pulse width further gives information on slope and roughness within this area. GALA is a similar instrument with 17 mJ pulse energy but 30 Hz repetition rate and was launched in April 2023 to enter the Jovian system after a eight-year cruise to fly-by at Europa and Callisto and finally orbit the Jovian moon Ganymede at an altitude of about 500 km above its icy surface. BELA and GALA are instruments that consume about 50 W and have a mass of close to 15 kg and 25 kg, respectively. The instrument dimensions are largely determined by the telescope diameter of about 30 cm. In order to enable the use of these instruments on small satellites the size, weight and power (SWaP) budgets need to be drastically reduced. This can be achieved by deriving the time-of-flight information from just a single return photon. The reduction factor of about 100 in the detected photon number can be shared by a reduction in laser energy and a reduction of telescope aperture diameter. Our aim is to reduce laser pulse energy from 17 mJ to 1 mJ and telescope diameter from 22 cm (for GALA) to 8 cm which implies in total a reduction factor about 130. GALA typically detects 700 photons per pulse at an altitude of 500 km which leads to about 5 photons to be analyzed per event by a single photon detection laser altimeter. The major challenges for a single photon detection laser altimeter are the reduction of the background photon rate by reducing the field-of-view of the telescope as well as better spectral filtering. We present first results from a conceptual experimental study of such a system designed for use on small satellites applying a newly developed detection scheme using a Single Photon Avalanche Diode (SPAD) and a diode-laser pumped microchip Nd:YAG laser emitting 1 mJ pulses with a pulse width of 1 ns. The reductions in dimension, mass, and power consumption of this instrument are discussed, and the scientific performance is simulated based on first experimental results. The feasibility of accommodating the instrument on the modular TUBiX20 microsatellite platform developed by Technische Universität Berlin is explored and the necessary requirements for attitude and orbit determination and control as well as SWaP budgets are derived

    Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials

    Get PDF
    Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the environment. Since several years the European Commission’s Joint Research Centre (JRC) is putting effort in the development, optimisation and harmonisation of in vitro test methods suitable for screening and hazard assessment of NMs. Work is done in collaboration with international partners, in particular the Organisation for Economic Co-operation and Development (OECD). This report presents the results from an interlaboratory comparison study of the in vitro Colony Forming Efficiency (CFE) cytotoxicity assay performed in the frame of OECD's Working Party of Manufactured Nanomaterials (WPMN). Twelve laboratories from European Commission, France, Italy, Japan, Poland, Republic of Korea, South Africa and Switzerland participated in the study coordinated by JRC. The results show that the CFE assay is a suitable and robust in vitro method to assess cytotoxicity of NMs. The assay protocol is well defined and is easily and reliably transferable to other laboratories. The results obtained show good intra and interlaboratory reproducibility of the assay for both the positive control and the tested nanomaterials. In conclusion the CFE assay can be recommended as a building block of an in vitro testing battery for NMs toxicity assessment. It could be used as a first choice method to define dose-effect relationships for other in vitro assays.JRC.I.4-Nanobioscience

    Indoor Navigation for Mobile Robots : Control and Representations

    No full text
    This thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen. Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events. In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly. A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation. In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction. Keywords:mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interactionNR 2014080

    A real-world rational agent: Unifying old and new AI

    No full text
    Explanations of cognitive processes provided by traditional artificial intelligence were based on the notion of the knowledge level. This perspective has been challenged by new AI that proposes an approach based on embodied systems that interact with the real world. We demonstrate that these two views can be unified. Our argument is based on the assumption that knowledge level explanations can be defined in the context of Bayesian theory while the goals of new AI are captured by using a well established robot based model of learning and problem solving, called Distributed Adaptive Control (DAC). In our analysis we consider random foraging and we prove that minor modifications of the DAC architecture renders a model that is equivalent to a Bayesian analysis of this task. Subsequently, we compare this enhanced, "rational", model to its, "non-rational", predecessor and a further control condition using both simulated and real robots, in a variety of environments. Our results show that the changes made to the DAC architecture, in order to unify the perspectives of old and new AI, also lead to a significant improvement in random foraging
    corecore