403 research outputs found

    Testing Lorentz invariance by use of vacuum and matter filled cavity resonators

    Full text link
    We consider tests of Lorentz invariance for the photon and fermion sector that use vacuum and matter-filled cavities. Assumptions on the wave-function of the electrons in crystals are eliminated from the underlying theory and accurate sensitivity coefficients (including some exceptionally large ones) are calculated for various materials. We derive the Lorentz-violating shift in the index of refraction n, which leads to additional sensitivity for matter-filled cavities ; and to birefringence in initially isotropic media. Using published experimental data, we obtain improved bounds on Lorentz violation for photons and electrons at levels of 10^-15 and below. We discuss implications for future experiments and propose a new Michelson-Morley type experiment based on birefringence in matter.Comment: 15 pages, 8 table

    Field Blue Stragglers and Related Mass Transfer Issues

    Full text link
    This chapter contains my impressions and perspectives about the current state of knowledge about field blue stragglers (FBS) stars, drawn from an extensive literature that I searched. I conclude my review of issues that attend FBS and mass transfer, by a brief enumeration of a few mildly disquieting observational facts.Comment: Chapter 4, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    COMAP Early Science: V. Constraints and Forecasts at z3z \sim 3

    Full text link
    We present the current state of models for the z3z\sim3 carbon monoxide (CO) line-intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy-halo connection and previous CO(1-0) observations. The Pathfinder early science data spanning wavenumbers k=0.051k=0.051-0.620.62\,Mpc1^{-1} represent the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude Aclust70μA_{\rm clust}\lesssim70\,\muK2^2 greatly improves on the indirect upper limit of 420μ420\,\muK2^2 reported from the CO Power Spectrum Survey (COPSS) measurement at k1k\sim1\,Mpc1^{-1}. The COMAP limit excludes a subset of models from previous literature, and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity-bias product, Tb250μ\langle{Tb}\rangle^2\lesssim50\,\muK2^2, and the cosmic molecular gas density, ρH2<2.5×108M\rho_\text{H2}<2.5\times10^8\,M_\odot\,Mpc3^{-3} (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the five-year Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise of 9-17. Between then and now, we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star-formation and galaxy-evolution history.Comment: Paper 5 of 7 in series. 17 pages + appendix and bibliography (30 pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3 reflects the accepted version with minor changes and additions to tex

    COMAP Early Science: III. CO Data Processing

    Full text link
    We describe the first season COMAP analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and map-making. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including χ2\chi^2 and multi-scale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a dataset with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap

    COMAP Early Science: IV. Power Spectrum Methodology and Results

    Full text link
    We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales k=0.0510.62Mpc1k=0.051-0.62 \,\mathrm{Mpc}^{-1} we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\textrm{K}^2\mathrm{Mpc}^3, the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum in the literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap

    Blood Signature of Pre-Heart Failure: A Microarrays Study

    Get PDF
    International audienceBACKGROUND: The preclinical stage of systolic heart failure (HF), known as asymptomatic left ventricular dysfunction (ALVD), is diagnosed only by echocardiography, frequent in the general population and leads to a high risk of developing severe HF. Large scale screening for ALVD is a difficult task and represents a major unmet clinical challenge that requires the determination of ALVD biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: 294 individuals were screened by echocardiography. We identified 9 ALVD cases out of 128 subjects with cardiovascular risk factors. White blood cell gene expression profiling was performed using pangenomic microarrays. Data were analyzed using principal component analysis (PCA) and Significant Analysis of Microarrays (SAM). To build an ALVD classifier model, we used the nearest centroid classification method (NCCM) with the ClaNC software package. Classification performance was determined using the leave-one-out cross-validation method. Blood transcriptome analysis provided a specific molecular signature for ALVD which defined a model based on 7 genes capable of discriminating ALVD cases. Analysis of an ALVD patients validation group demonstrated that these genes are accurate diagnostic predictors for ALVD with 87% accuracy and 100% precision. Furthermore, Receiver Operating Characteristic curves of expression levels confirmed that 6 out of 7 genes discriminate for left ventricular dysfunction classification. CONCLUSIONS/SIGNIFICANCE: These targets could serve to enhance the ability to efficiently detect ALVD by general care practitioners to facilitate preemptive initiation of medical treatment preventing the development of HF

    COMAP Early Science: I. Overview

    Full text link
    The CO Mapping Array Project (COMAP) aims to use line intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1-0) emission from z=2.4z=2.4-3.43.4 and a fainter contribution from CO(2-1) at z=6z=6-8, the Pathfinder is surveying 1212 deg2^2 in a 5-year observing campaign to detect the CO signal from z3z\sim3. Using data from the first 13 months of observing, we estimate PCO(k)=2.7±1.7×104μK2Mpc3P_\mathrm{CO}(k) = -2.7 \pm 1.7 \times 10^4\mu\mathrm{K}^2 \mathrm{Mpc}^3 on scales k=0.0510.62Mpc1k=0.051-0.62 \mathrm{Mpc}^{-1} - the first direct 3D constraint on the clustering component of the CO(1-0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature-bias product) of Tb2<49\langle Tb\rangle^2<49 μ\muK2^2 - nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 years with signal-to-noise ratio (S/N) 9-17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO-galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR.Comment: Paper 1 of 7 in series. 18 pages, 16 figures, submitted to Ap

    Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Main results: We identified and replicated three new genome-wide significant (P<5×10−8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility
    corecore