27 research outputs found
A Roadmap for HEP Software and Computing R&D for the 2020s
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe
Sub-ppb detection of benzene using cantilever-enhanced photoacoustic spectroscopy with a long-wavelength infrared quantum cascade laser
We report a novel, to the best of our knowledge, photoacoustic spectrometer for trace gas sensing of benzene. A quantum cascade laser emitting at the wavelength 14.8 mu m is used as the light source in the spectroscopic detection. This wavelength region contains the strongest vibrational band of benzene, which is free of spectral overlap from common trace gases, making it a strong candidate for sensitive benzene detection. Cantilever-enhanced photoacoustic spectroscopy is used for detection. This simple and robust measurement setup can reach a benzene detection limit below 1 ppb. (C) 2020 Optical Society of AmericaPeer reviewe
Long Wavelength (λ > 17 µm) Distributed Feedback Quantum Cascade Lasers Operating in a Continuous Wave at Room Temperature
The extension of the available spectral range covered by quantum cascade lasers (QCL) would allow one to address new molecular spectroscopy applications, in particular in the long wavelength domain of the mid-infrared. We report in this paper the realization of distributed feedback (DFB) QCLs, made of InAs and AlSb, that demonstrated a continuous wave (CW) and a single mode emission at a wavelength of 17.7 µm, with output powers in the mW range. This is the longest wavelength for DFB QCLs, and for any QCLs or semiconductor lasers in general, operating in a CW at room temperature
Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon?
International audienceThe impact flux over the last 3 Ga in the inner Solar System is commonly assumed to be constant through time due to insufficient data to warrant a different choice for this range of time. However, asteroid break-up events in the main belt may have been responsible for cratering spikes over the last ∼2 Ga on the Earth-Moon system. Due to its proximity with the main asteroid belt, i.e., the main impactors reservoir, Mars is at the outpost of these events with respect to the other inner planets. We investigate here, from automatic crater identification, the possible variations of the size frequency distributions of impactors from the record of small craters of 521 impact craters larger than 20 km in diameter. We show that 49 craters (out of the 521) correspond to the complete crater population of this size formed over the last 600 Ma. Our results on Mars show that the flux of both small (> 5 m) and large asteroids (> 1 km) are coupled, does not vary between each other over the last 600 Ma. Existing data sets for large craters on the Earth and the Moon are analyzed and compared to our results on Mars. On Earth, we infer the formation location of a set of impact craters thanks to plate tectonic reconstruction and show that a cluster of craters formed during the Ordovician period, about 470 Ma ago, appears to be a preservation bias. On the Moon, the late increase seen in the crater age signal can be due to the uncertain calibration method used to date those impacts (i.e. rock abundance in lunar impact ejecta), and other calibrations are consistent with a constant crater production rate. We conclude to a coupling of the crater production rate between kilometer-size craters (∼100 m asteroids) and down to ∼100 m in diameter (∼5 m asteroids) in the inner Solar System. This is consistent with the traditional model for delivering asteroids to planet-crossing obits: the Yarkovsky effect slowly pushes the large debris from asteroid break-ups towards orbital resonances while smaller debris are grinded through collisional cascades. This suggests that the long-term impact flux of asteroids > 5 m is most likely constant over the last 600 Ma, and that the influence of past asteroid break-ups in the cratering rate for D > 100 m is limited or inexistent
A Global Fireball Observatory
The world's meteorite collections contain a very rich picture of what the early Solar System would have been made of, however the lack of spatial context with respect to their parent population for these samples is an issue. The asteroid population is equally as rich in surface mineralogies, and mapping these two populations (meteorites and asteroids) together is a major challenge for planetary science. Directly probing asteroids achieves this at a high cost. Observing meteorite falls and calculating their pre-atmospheric orbit on the other hand, is a cheaper way to approach the problem. The Global Fireball Observatory (GFO) collaboration was established in 2017 and brings together multiple institutions (from Australia, USA, Canada, Morocco, Saudi Arabia, the UK, and Argentina) to maximise the area for fireball observation time and therefore meteorite recoveries. The members have a choice to operate independently, but they can also choose to work in a fully collaborative manner with other GFO partners. This efficient approach leverages the experience gained from the Desert Fireball Network (DFN) pathfinder project in Australia. The state-of-the art technology (DFN camera systems and data reduction) and experience of the support teams is shared between all partners, freeing up time for science investigations and meteorite searching. With all networks combined together, the GFO collaboration already covers 0.6% of the Earth's surface for meteorite recovery as of mid-2019, and aims to reach 2% in the early 2020s. We estimate that after 5 years of operation, the GFO will have observed a fireball from virtually every meteorite type. This combined effort will bring new, fresh, extra-terrestrial material to the labs, yielding new insights about the formation of the Solar System.This research is supported by the Australian Research Council
through the Linkage Infrastructure, Equipment and Facilities program
(LE170100106). The DFN receives institutional support from Curtin
University, and uses the computing facilities of the Pawsey super-
computing center. The team would like to thank the people hosting the
observatories.
The NASA Tracking and Recovery Network is funded by NASA grant
80 NSSC18K08. PJ acknowledges logistic support from NASA’s SERVII
progra