23 research outputs found

    High-resolution observations of dust in SN 1987A

    Get PDF
    The dust produced by supernovae is an important topic for understanding supernova physics and the chemical evolution of galaxies. Recent ALMA observations of SN 1987A have allowed us to peer into the inner ejecta to the cool dust, with spatial resolution from 0:003 at 300 GHz down to 0:0009 at 680 GHz { an improvement over the previous 300 GHz Cycle 0 observations at 0:0069. Comparison of the dust location and morphology with other multiwave- length emission presents an interesting picture of the role dust plays in the ejecta. The mm{FIR SED is compared to radiative models to study the dust composition 30 years after the initial explosion. Fits to the ring emission also probe the drift of the center of the system over time

    A Search for Correlations between Turbulence and Star Formation in LITTLE THINGS Dwarf Irregular Galaxies

    Get PDF
    Turbulence has the potential for creating gas density enhancements that initiate cloud and star formation (SF), and it can be generated locally by SF. To study the connection between turbulence and SF, we looked for relationships between SF traced by FUV images, and gas turbulence traced by kinetic energy density (KED) and velocity dispersion (v disp) in the LITTLE THINGS sample of nearby dIrr galaxies. We performed 2D cross-correlations between FUV and KED images, measured cross-correlations in annuli to produce correlation coefficients as a function of radius, and determined the cumulative distribution function of the cross-correlation value. We also plotted on a pixel-by-pixel basis the locally excess KED, v disp, and H i mass surface density, ΣHI, as determined from the respective values with the radial profiles subtracted, versus the excess SF rate density ΣSFR, for all regions with positive excess ΣSFR. We found that ΣSFR and KED are poorly correlated. The excess KED associated with SF implies a ∼0.5% efficiency for supernova energy to pump local H i turbulence on the scale of the resolution here, which is a factor of ∼2 too small for all of the turbulence on a galactic scale. The excess v disp in SF regions is also small, only ∼0.37 km s-1. The local excess in ΣHI corresponding to an excess in ΣSFR is consistent with a H i consumption time of ∼1.6 Gyr in the inner parts of the galaxies. The similarity between this timescale and the consumption time for CO implies that CO-dark molecular gas has comparable mass to H i in the inner disks

    A Search for correlations between turbulence and star formation in LITTLE THINGS dwarf irregular galaxies

    Get PDF
    Turbulence has the potential for creating gas density enhancements that initiate cloud and star formation (SF), and it can be generated locally by SF. To study the connection between turbulence and SF, we looked for relationships between SF traced by FUV images, and gas turbulence traced by kinetic energy density (KED) and velocity dispersion (vdispv_{disp}) in the LITTLE THINGS sample of nearby dIrr galaxies. We performed 2D cross-correlations between FUV and KED images, measured cross-correlations in annuli to produce correlation coefficients as a function of radius, and determined the cumulative distribution function of the cross correlation value. We also plotted on a pixel-by-pixel basis the locally excess KED, vdispv_{disp}, and HI mass surface density, ΣHI\Sigma_{\rm HI}, as determined from the respective values with the radial profiles subtracted, versus the excess SF rate density ΣSFR\Sigma_{\rm SFR}, for all regions with positive excess ΣSFR\Sigma_{\rm SFR}. We found that ΣSFR\Sigma_{\rm SFR} and KED are poorly correlated. The excess KED associated with SF implies a 0.5\sim0.5% efficiency for supernova energy to pump local HI turbulence on the scale of resolution here, which is a factor of 2\sim2 too small for all of the turbulence on a galactic scale. The excess vdispv_{disp} in SF regions is also small, only 0.37\sim0.37 km s1^{-1}. The local excess in ΣHI\Sigma_{\rm HI} corresponding to an excess in ΣSFR\Sigma_{\rm SFR} is consistent with an HI consumption time of 1.6\sim1.6 Gyr in the inner parts of the galaxies. The similarity between this timescale and the consumption time for CO implies that CO-dark molecular gas has comparable mass to HI in the inner disks.Comment: In press in the Astronomical Journa

    The Dust in M31

    Get PDF
    We have analysed Herschel observations of M31, using the PPMAP procedure. The resolution of PPMAP images is sufficient (31 pc on M31) that we can analyse far-IR dust emission on the scale of Giant Molecular Clouds. By comparing PPMAP estimates of the far-IR emission optical depth at 300 microns (tau_300), and the near-IR extinction optical depth at 1.1 microns (tau_1.1) obtained from the reddening of RGB stars, we show that the ratio R_OBS.tau = tau_1.1/tau_300 falls in the range 500 to 1500. Such low values are incompatible with many commonly used theoretical dust models, which predict values of R_MODEL.kappa = kappa_1.1/kappa_300 (where kappa is the dust opacity coefficient) in the range 2500 to 4000. That is, unless a large fraction, at least 60%, of the dust emitting at 300 microns is in such compact sources that they are unlikely to intercept the lines of sight to a distributed population like RGB stars. This is not a new result: variants obtained using different observations and/or different wavelengths have already been reported by other studies. We present two analytic arguments for why it is unlikely that at least 60% of the emitting dust is in sufficiently compact sources. Therefore it may be necessary to explore the possibility that the discrepancy between observed values of R_OBS.tau and theoretical values of R_MODEL.kappa is due to limitations in existing dust models. PPMAP also allows us to derive optical-depth weighted mean values for the emissivity index, beta = - dln(kappa_lambda)/dln(lambda), and the dust temperature, T, denoted betabar and Tbar. We show that, in M31, R_OBS.tau is anti-correlated with betabar according to R_OBS.tau = 2042(+/-24)-557(+/-10)betabar. If confirmed, this provides a challenging constraint on the nature of interstellar dust in M31.Comment: 17 pages, 8 figures, 3 table

    VLA FRAMEx. I. Wideband Radio Properties of the AGN in NGC 4388

    Full text link
    We present the first results from Karl G. Jansky Very Large Array (VLA) observations as a part of the Fundamental Reference Active Galactic Nucleus (AGN) Monitoring Experiment (FRAMEx), a program to understand the relationship between AGN accretion physics and wavelength-dependent position as a function of time. With this VLA survey, we investigate the radio properties from a volume-complete sample of 25 hard X-ray-selected AGNs using the VLA in its wideband mode. We observed the targets in the A-array configuration at 4124-12 GHz with all polarization products. In this work, we introduce our calibration and imaging methods for this survey, and we present our results and analysis for the radio quiet AGN NGC 4388. We calibrated and imaged these data using the multi-term, multi-frequency synthesis imaging algorithm to determine its spatial, spectral and polarization structure across a continuous 4124-12 GHz band. In the AGN, we measure a broken power law spectrum with α=0.06\alpha=-0.06 below a break frequency of 7.3 GHz and α=0.34\alpha=-0.34 above. We detect polarization at sub-arcsecond resolution across both the AGN and a secondary radio knot. We compare our results to ancillary data and find that the VLA radio continuum is likely due to AGN winds interacting with the local interstellar medium that gets resolved away at sub-parsec spatial scales as probed by the Very Long Baseline Array. A well-known ionization cone to the southwest of the AGN appears likely to be projected material onto the underside of the disk of the host galaxy.Comment: 22 pages, 9 figures, Accepted in Ap

    Wandering Black Hole Candidates in Dwarf Galaxies at VLBI Resolution

    Full text link
    Thirteen dwarf galaxies have recently been found to host radio-selected accreting massive black hole (MBH) candidates, some of which are ``wandering" in the outskirts of their hosts. We present 9 GHz Very Long Baseline Array (VLBA) observations of these sources at milliarcsecond resolution. Our observations have beam solid angles 104{\sim}10^4 times smaller than the previous Very Large Array (VLA) observations at 9 GHz, with comparable point source sensitivities. We detect milliarcsecond-scale radio sources at the positions of the four VLA sources most distant from the photo-centers of their associated dwarf galaxies. These sources have brightness temperatures of >106 K{>}10^6~\mathrm{K}, consistent with active galactic nuclei (AGNs), but the significance of their preferential location at large distances (pp-value~=0.0014=0.0014) favors a background AGN interpretation. The VLBA non-detections toward the other 9 galaxies indicate that the VLA sources are resolved out on scales of tens of milliarcseconds, requiring extended radio emission and lower brightness temperatures consistent with either star formation or radio lobes associated with AGN activity. We explore the star formation explanation by calculating the expected radio emission for these nine VLBA non-detections, finding that about 5 have VLA luminosities that are inconsistent with this scenario. Of the remaining four, two are associated with spectroscopically confirmed AGNs that are consistent with being located at their galaxy photo-centers. There are therefore between 5 and 7 wandering MBH candidates out of the 13 galaxies we observed, although we cannot rule out background AGNs for five of them with the data in hand.Comment: 13 pages, 3 figures, Accepted in Ap

    A Complete Catalogue of Dusty Supernova Remnants

    Get PDF
    We search for far-infrared (FIR) counterparts of known supernova remnants (SNRs) in the Galactic plane (360 degrees in longitude and b = +/- 1 deg ) at 70 - 500 micron with Herschel. We detect dust signatures in 39 SNRs out of 190, made up of 13 core-collapse supernovae (CCSNe), including 4 Pulsar Wind Nebulae (PWNe), and 2 Type Ia SNe. A further 24 FIR detected SNRs have unknown types. We confirm the FIR detection of ejecta dust within G350.1-0.3, adding to the known sample of ~10 SNRs containing ejecta dust. We discover dust features at the location of a radio core at the centre of G351.2+0.1, indicating FIR emission coincident with a possible Crab-like compact object, with dust temperature and mass of Td = 45.8 K and Md = 0.18 solar mass, similar to the PWN G54.1+0.3. We show that the detection rate is higher among young SNRs. We produce dust temperature maps of 11 SNRs and mass maps of those with distance estimates, finding dust at temperatures 15 < Td < 40 K. If the dust is heated by shock interactions the shocked gas must be relatively cool and/or have a low density to explain the observed low grain temperatures.Comment: 25 pages, 26 figures. Accepted in MNRAS. For images and details of the complete catalogue see the Appendix at https://github.com/hanchawn/Arxi

    Mid-infrared imaging of supernova 1987a

    Get PDF
    At a distance of 50 kpc, Supernova 1987A is an ideal target to study how a young supernova (SN) evolves in time. Its equatorial ring, filled with material expelled from the progenitor star about 20,000 years ago, has been engulfed with SN blast waves. Shocks heat dust grains in the ring, emitting their energy at mid-infrared (IR) wavelengths We present ground-based 10–18 μm monitoring of the ring of SN 1987A from day 6067 to 12814 at a resolution of 0.5”, together with SOFIA photometry at 10–30 μm. The IR images in the 2000’s (day 6067–7242) showed that the shocks first began brightening the east side of the ring. Later, our mid-IR images from 2017 to 2022 (day 10952–12714) show that dust emission is now fading in the east, while it has brightened on the west side of the ring. Because dust grains are heated in the shocked plasma, which can emit X-rays, the IR and X-ray brightness ratio represent shock diagnostics. Until 2007 the IR to X-ray brightness ratio remained constant over time, and during this time shocks seemed to be largely influencing the east side of the ring. However, since then, the IR to X-ray ratio has been declining, due to increased X-ray brightness. Whether the declining IR brightness is because of dust grains being destroyed or being cooled in the post-shock regions will require more detailed modelling

    Little Things

    Get PDF
    We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey) that is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 Dwarf Irregular and 4 Blue Compact Dwarf galaxies that is centered around HI-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The HI-line data are characterized by high sensitivity (less than 1.1 mJy/beam per channel), high spectral resolution (less than or equal to 2.6 km/s), and high angular resolution (~6 arcseconds. The LITTLE THINGS sample contains dwarf galaxies that are relatively nearby (less than or equal to 10.3 Mpc; 6 arcseconds is less than or equal to 300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as HI map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the HI data we have GALEX UV and ground-based UBV and Halpha images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available on-line.Comment: In press in A

    High angular resolution ALMA images of dust and molecules in the SN 1987A ejecta

    Get PDF
    We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO J = 2 \to 1, J = 6 \to 5, and SiO J = 5 \to 4 to J = 7 \to 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in Hα images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 \to 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 \to 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 \to 1 and SiO J = 5 \to 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared–millimeter spectral energy distribution give ejecta dust temperatures of 18–23 K. We revise the ejecta dust mass to M dust = 0.2–0.4 M{M}_{\odot } for carbon or silicate grains, or a maximum of <0.7 M{M}_{\odot } for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit
    corecore