5 research outputs found

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Cross-correlation of POLARBEAR CMB Polarization Lensing with High-zz Sub-mm Herschel-ATLAS galaxies

    No full text
    We report a 4.8σ\sigma measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the POLARBEAR experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of b=5.76±1.25b = 5.76 \pm 1.25, corresponding to a host halo mass of log⁥10(Mh/M⊙)=13.5−0.3+0.2\log_{10}(M_h/M_\odot) =13.5^{+0.2}_{-0.3} at an effective redshift of z∌2z \sim 2 from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the sub-mm galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extra-galactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments

    A Measurement of the CMB EE-mode Angular Power Spectrum at Subdegree Scales from670 Square Degrees of POLARBEAR Data

    Get PDF
    International audienceWe report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from 2014 July to 2016 December with the Polarbear experiment. We reach an effective polarization map noise level of - across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range , tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is ∌2.3 at , with a systematic uncertainty of 0.5 . The data are consistent with the standard ΛCDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in ΛCDM as well as in extensions to ΛCDM. Adding the ground-based CMB polarization measurements to the Planck data set reduces the uncertainty on the Hubble constant by a factor of 1.2 to . When allowing the number of relativistic species () to vary, we find , which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance () to vary, the data favor . This is very close to the expectation of 0.2467 from big bang nucleosynthesis. When varying both and , we find and

    A measurement of the degree-scale CMB B-mode angular power spectrum with POLARBEAR

    Get PDF
    We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23ÎŒ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18â€Č). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 ÎŒK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≀ ℓ ≀ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds
    corecore