801 research outputs found

    Applications of the ER-2 meteorological measurement system

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was developed specifically for atmospheric research to provide accurate high resolution measurements of pressure, temperature, and the 3-D wind vector with a sampling rate of 5/s. The MMS consist of three subsystems: (1) an air motion sensing system to measure the velocity of the air with respect to the aircraft; (2) a high resolution inertial navigation system (INS) to measure the velocity of the aircraft with respect to the earth; and (3) a data acquisition system to sample, process, and record the measurement quantities. MMS data have been used extensively by ER-2 investigators in elucidating the polar ozone chemistry. Herein, applications on atmospheric dynamics are emphasized. Large scale (polar vortex, potential vorticity, model atmosphere), mesoscale (gravity waves, mountain waves) and microscale (heat fluxes) atmospheric phenomena are investigated and discussed

    β2 Adrenergic Receptor Fluorescent Protein Fusions Traffic to the Plasma Membrane and Retain Functionality

    Full text link
    Green fluorescent protein (GFP) has proven useful for the study of protein interactions and dynamics for the last twenty years. A variety of new fluorescent proteins have been developed that expand the use of available excitation spectra. We have undertaken an analysis of seven of the most useful fluorescent proteins (XFPs), Cerulean (and mCerulean3), Teal, GFP, Venus, mCherry and TagRFP657, as fusions to the archetypal G-protein coupled receptor, the β2 adrenergic receptor (β2AR). We have characterized these β2AR::XFP fusions in respect to membrane trafficking and G-protein activation. We noticed that in the mouse neural cell line, OP 6, that membrane bound β2AR::XFP fusions robustly localized in the filopodia identical to gap::XFP fusions. All β2ARR::XFP fusions show responses indistinguishable from each other and the non-fused form after isoprenaline exposure. Our results provide a platform by which G-protein coupled receptors can be dissected for their functionality

    In Vitro Mutational Analysis of the β2 Adrenergic Receptor, an In Vivo Surrogate Odorant Receptor

    Full text link
    Many G-protein coupled receptors (GPCRs), such as odorant receptors (ORs), cannot be characterized in heterologous cells because of their difficulty in trafficking to the plasma membrane. In contrast, a surrogate OR, the GPCR mouse β2-adrenergic-receptor (mβ2AR), robustly traffics to the plasma membrane. We set out to characterize mβ2AR mutants in vitro for their eventual use in olfactory axon guidance studies. We performed an extensive mutational analysis of mβ2AR using a Green Fluorescent Protein-tagged mβ2AR (mβ2AR::GFP) to easily assess the extent of its plasma membrane localization. In order to characterize mutants for their ability to successfully transduce ligand-initiated signal cascades, we determined the half maximal effective concentrations (EC50) and maximal response to isoprenaline, a known mβ2AR agonist. Our analysis reveals that removal of amino terminal (Nt) N-glycosylation sites and the carboxy terminal (Ct) palmitoylation site of mβ2AR do not affect its plasma membrane localization. By contrast, when both the Nt and Ct of mβ2AR are replaced with those of M71 OR, plasma membrane trafficking is impaired. We further analyze three mβ2AR mutants (RDY, E268A, and C327R) used in olfactory axon guidance studies and are able to decorrelate their plasma membrane trafficking with their capacity to respond to isoprenaline. A deletion of the Ct prevents proper trafficking and abolishes activity, but plasma membrane trafficking can be selectively rescued by a Tyrosine to Alanine mutation in the highly conserved GPCR motif NPxxY. This new loss-of-function mutant argues for a model in which residues located at the end of transmembrane domain 7 can act as a retention signal when unmasked. Additionally, to our surprise, amongst our set of mutations only Ct mutations appear to lower mβ2AR EC50s revealing their critical role in G-protein coupling. We propose that an interaction between the Nt and Ct is necessary for proper folding and/or transport of GPCRs

    Les températures extrêmes de l’année 2003 dans le Nord-Est français et ses bordures luxembourgeoise et allemande

    Get PDF
    Les valeurs de températures extrêmes quotidiennes (Tn et Tx) enregistrées au cours de l’année 2003 sont analysées pour plus de cinquante stations de mesure climatologiques réparties sur le Nord-Est français et sur la bordure frontalière. Dans un premier temps les moyennes annuelles de températures extrêmes de l’année 2003 sont positionnées par rapport à la normale climatique 1971-2000 et la décennie 1991-2000, marquée par une succession d’années chaudes. L’épisode de chaleur estival est ensuite étudié à l’aide de différents indices de température dont la répartition spatiale met en évidence la vulnérabilité des espaces de moyenne montagne au réchauffement climatique en cours.Daily values of extreme air temperatures (Tn and Tx) for the year 2003 were investigated for more than fifty weather stations distributed throughout northeastern France, including bordering areas. A first step was to compare mean annual values of extreme air temperatures to the 1971-2000 and the 1991-2000 baseline periods, the latter being affected by a sequence of warm years. The summer 2003 heat wave was next analysed, based on a set of temperature indices. The spatial distribution of these indices shows the vulnerability of middle mountains to the recent climate warming.Extreme Tageslufttemperaturen (Tn und Tx) des Jahres 2003 sind in mehr als 50 Wetterbeobachtungsstationen im Nordosten Frankreichs, sowie in den Grenzgebieten, untersucht worden. Zuerst wurden die Jahresmittelwerte der extremen Lufttemperaturen mit den Normen der Perioden 1971-2000 und 1991-2000 verglichen, wobei letztere von einer Sequenz mit wärmeren Jahren gekennzeichnet ist. Anschliessend wurde die Hitzewelle des Sommers 2003 mit Hilfe von verschiedenen Temperaturindikatoren analysiert. Die räumliche Verteilung dieser Indikatoren zeigt dass Mittelgebirge am stärksten von der rezenten Klimaerwärmung betroffen sind

    Lack of IL‐6 augments inflammatory response but decreases vascular permeability in bacterial meningitis

    Get PDF
    Interleukin (IL)‐6 is a multifunctional cytokine with diverse actions and has been implicated in the pathophysiology of many neurological and inflammatory disorders. In this study, we investigated the role of IL‐6 in pneumococcal meningitis. Cerebral infection in wild‐type (WT) mice caused an increase in vascular permeability and intracranial pressure (ICP), which were significantly reduced in IL‐6-/- mice. In contrast, meningitis in IL‐6-/- mice was associated with a significant increase in CSF white blood cell count compared with infected WT mice, indicating an enhanced inflammatory response. Analysis of mRNA expression in the brain showed an increase in tumour necrosis factor (TNF)‐α, IL‐1β, and macrophage inflammatory protein 2 (MIP‐2) levels, but decreased expression of granulocyte-macrophage colony‐stimulating factor in infected IL‐6-/- mice compared with infected WT controls. Similar results were obtained when rats challenged with pneumococci were systemically treated with neutralizing anti‐IL‐6 antibodies, resulting in an increased pleocytosis but at the same time a reduction of vascular permeability, brain oedema formation, and ICP, which was not accompanied by a downregulation of matrix metalloproteinases. Our data indicate that IL‐6 plays an important anti‐inflammatory role in bacterial meningitis by reducing leukocyte infiltration but contributes to the rise in intracranial pressure by increasing blood-brain barrier (BBB) permeability. These findings suggest that the migration of leukocytes across the BBB and the increase in vascular permeability are two independent processes during bacterial meningiti

    Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)

    Get PDF
    The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner

    Alpine Glacier Reveals Ecosystem Impacts of Europe’s Prosperity and Peril Over the Last Millennium

    Get PDF
    Information about past ecosystem dynamics and human activities is stored in the ice of Colle Gnifetti glacier in the Swiss Alps. Adverse climatic intervals incurred crop failures and famines and triggered reestablishment of forest vegetation but also societal resilience through innovation. Historical documents and lake sediments record these changes at local—regional scales but often struggle to comprehensively document continental-scale impacts on ecosystems. Here, we provide unique multiproxy evidence of broad-scale ecosystem, land use, and climate dynamics over the past millennium from a Colle Gnifetti microfossil and oxygen isotope record. Microfossil data indicate that before 1750 CE forests and fallow land rapidly replaced crop cultivation during historically documented societal crises caused by climate shifts and epidemics. Subsequently, with technology and the introduction of more resilient crops, European societies adapted to the Little Ice Age cold period, but resource overexploitation and industrialization led to new regional to global-scale environmental challenges
    corecore