396 research outputs found

    Crossover and coexistence of quasiparticle excitations in the fractional quantum Hall regime at nu <= 1/3

    Get PDF
    New low-lying excitations are observed by inelastic light scattering at filling factors nu=p/(phip+/-1) of the fractional quantum Hall regime with phi=4. Coexisting with these modes throughout the range nuless than or equal to1/3 are phi=2 excitations seen at 1/3. Both phi=2 and phi=4 excitations have distinct behaviors with temperature and filling factor. The abrupt first appearance of the new modes in the low-energy excitation spectrum at nuless than or similar to1/3 suggests a marked change in the quantum ground state on crossing the phi=2-->phi=4 boundary at nu=1/3

    Spin texture and magnetoroton excitations at nu=1/3

    Get PDF
    Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020 +/- 0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3

    Detection of anomalous Hall voltages in ultrahigh-mobility two-dimensional hole gases generated by optical spin orientation

    Get PDF
    By combining optical spin orientation and an externally applied longitudinal electric field, transverse charge accumulation has been detected in very high-mobility two-dimensional hole gases by measuring the transverse voltage drop across simple Hall devices. Our results indicate intrinsic band-structure (rather than extrinsic skew scattering) derived spin-orbit coupling as the underlying mechanism of this spin-polarized transport effect.This work was supported by the EPSRC.This is the author accepted manuscript. The final version was first published by APS at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.201406

    Resonant Subband Landau Level Coupling in Symmetric Quantum Well

    Full text link
    Subband structure and depolarization shifts in an ultra-high mobility GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared spectroscopy via resonant subband Landau level coupling. Resonant couplings between the 1st and up to the 4th subbands are identified by well-separated anti-level-crossing split resonance, while the hy-lying subbands were identified by the cyclotron resonance linewidth broadening in the literature. In addition, a forbidden intersubband transition (1st to 3rd) has been observed. With the precise determination of the subband structure, we find that the depolarization shift can be well described by the semiclassical slab plasma model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Directional Goldstone waves in polariton condensates close to equilibrium

    Get PDF
    Quantum fluids of light are realized in semiconductor microcavities using exciton-polaritons, solid-state quasi-particles with a light mass and sizeable interactions. Here, we use the microscopic analogue of oceanographic techniques to measure the excitation spectrum of a thermalised polariton condensate. Increasing the fluid density, we demonstrate the transition from a free-particle parabolic dispersion to a linear, sound-like Goldstone mode characteristic of superfluids at equilibrium. Notably, we reveal the effect of an asymmetric pumping by showing that collective excitations are created with a definite direction with respect to the condensate. Furthermore, we measure the critical sound speed for polariton superfluids close to equilibrium

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Topological order and thermal equilibrium in polariton condensates

    Get PDF
    The Berezinskii–Kosterlitz–Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light–matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven–dissipative phase transitions and enable the investigation of topological ordering in open systems

    Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 18 December 2016We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500◩C – 1000◩C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 ”m to 100 ”m, thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 ”m. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ∌950◩C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.This work is supported by ONR (N000140610138 and Graphene MURI), AFOSR (FA9550-11-1-0010), EFRC Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control (award DE-SC0001085), NSF (CHE-0641523), NYSTAR and Spanish Government (AIC-B-2011-0806, MAT2014-54231, MAT2015-67021-R). S.W. and A.P. were supported by the US Department of Energy Office of Science, Division of Materials Science and Engineering (award DE-SC0010695)

    The development of study-specific self-efficacy during grammar school.(Zur Entwicklung der studienspezifischen Selbstwirksamkeit in der Oberstufe)

    Get PDF
    Article is in German. Even if more and more German adolescents acquire a university entrance qualification, not all of them finally enrol at a university. In particular, the transition from school to university strongly depends on parent’s education. Even with the same marks in school, adolescents from non-academic households are less likely to enrol in universities than adolescents from academic housholds. One important reason is their lower belief to master a university study. This study analyses a specific intervention in grammar school to improve study-specific self- efficacy, the belief in one’s capabilities to master a university study, using a longitudinal design. We apply a difference-in-difference framework and show that programme participation significantly improves the study-specific self-efficacy for puplis from non- academic families but not for those from academic families. Hence, such a programme could reduce social disparities between both groups
    • 

    corecore