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We report the observation of the Berezinskii-Kosterlitz-Thouless transition for a17

2D gas of exciton-polaritons � bosonic light-matter particles � in semiconductor mi-18

crocavities. Di�erently from the case of ultracold atoms, the joint measurement of19

the �rst-order coherence both in space and time is required to characterize the phase20

transition in this driven-dissipative system. The observed quasi-ordered phase, char-21

acteristic for an equilibrium 2D bosonic gas, with a decay of coherence in both spatial22

and temporal domains with the same algebraic exponent, is reproduced with numer-23

ical solutions of stochastic dynamics, proving that the mechanism of pairing of the24

topological defects (vortices) is responsible for the transition to the algebraic order.25

This is made possible thanks to long polariton lifetimes in high-quality samples with26

small disorder and in a reservoir-free region far away from the excitation spot. These27

results open the way to the investigation of topological ordering in open systems and28

of out-of-equilibrium phase transitions in optical microcavities.29

Collective phenomena which involve the emergence of an ordered phase in many-body systems30

have a tremendous relevance in almost all �elds of knowledge, spanning from physics to biology31

and social dynamics1,2. While the physical mechanisms can be very di�erent depending on the sys-32
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tem considered, statistical mechanics aims at providing universal descriptions of phase transitions33

on the basis of few and general parameters, the most important ones being dimensionality and34

symmetry3�5. The spontaneous symmetry breaking of Bose�Einstein condensates (BEC) below a35

critical temperature TC > 0 is a remarkable example of such a transition, with the emergence of an36

extended coherence giving rise to a long range order (LRO)6�8. Notably, in in�nite systems with37

dimensionality d ≤ 2, true LRO cannot be established at any �nite temperature9. This is funda-38

mentally due to the presence of low-energy, long-wavelength thermal �uctuations (i.e. Goldstone39

modes) that prevail in d ≤ 2 geometries.40

BKT phase transition41

However, if we accept a lower degree of order, characterised by an algebraic decay of coherence,42

it is still possible to make a clear distinction between such a quasi-long-range-ordered (QLRO)43

and a disordered phase in which the coherence is lost in a much faster, exponential way. Such44

transitions, in two dimensions (2D) and at a critical temperature TBKT > 0, are explained in the45

Berezinskii�Kosterlitz�Thouless theory (BKT) by the proliferation of vortices�the fundamental46

topological defects�of opposite signs10. This theory is well established for 2D ensembles of cold47

atoms in thermodynamic equilibrium, where the transition is linked to the appearance of a linear48

relationship between the energy and the wavevector of the excitations in the quasi-ordered state11.49

The joint observation of spatial and temporal decay of coherence has never been observed in atomic50

systems, mainly because of technical di�culties in measuring long-time correlations. These are51

important observables to bring together because an algebraic decay, with the same exponent α, for52

both the temporal and spatial correlations of the condensed state, implies a linear dispersion for53

the elementary excitations12�14.5455

Phase transition in open systems56

On the other hand, semiconductor systems such as microcavity polaritons (dressed photons with57

sizeable interactions mediated by the excitonic component) appear to be, since the report of their58

condensation15�17, ideal platforms to extend the investigation of many-body physics to the more59

general scenario of phase transitions in driven-dissipative systems18. However, establishing if the60

transition can actually be governed by the same BKT process as for equilibrium system has proven61

to be challenging from both the theoretical19�21 and experimental perspective22�24. Indeed, the62

dynamics of phase �uctuations is strongly modi�ed by pumping and dissipation, and the direct63

measurement of their dispersion by photoluminescence and four-wave-mixing experiments is limited64

by the short polariton lifetime, by the pumping-induced noise and by the low resolution close to65
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Figure 1. Pumping mechanism and interferometric setup. a, Sketch of polariton relaxation in space

(x, y) and energy (vertical axis). The carriers, injected by the pumping laser, relax quickly into excitonic

states (yellow area) spatially con�ned within the pumping spot region. E�cient scattering from the exciton

reservoir into polariton states results in a region of high polariton density (red area) which expands radially.

During the expansion, the long lifetime allows for polariton relaxation into lower energy states and eventually,

at high power, into the ground state. Above a threshold power, an extended 2D polariton condensate (blue

area) is formed outside of the pumped region.b, Interferogram of the region in the black-dashed rectangle in

c. The black dot at the centre indicates the autocorrelation point r0. c, 2D real-space image of the emitted

light (arbitrary intensity units in color scale) from a portion of the condensate. To visualise only the bottom

energy state in 2D images, the emission coming from |k| < 1 µm−1 has been selected in the far �eld to avoid

the contribution of higher energy polaritons. The yellow, dashed circle indicates the blue-shifted region

corresponding to the position of the laser spot. d, Scheme of the interferometric setup: R=retrore�ector,

BS=beam splitter, D=long delay line.The retrore�ector R is a 3-mirror corner re�ector used to re�ect the

image at the central point r0 before sending it back towards the BS.

the energy of the condensate. Moreover, the algebraic decay of coherence has been experimentally66

demonstrated only in spatial correlations, while only exponential or Gaussian decays of temporal67

coherence, which are not compatible with a BKT transition, have been reported until now25�28.68

The lack of a power-law decay of temporal correlations is a robust argument against a true BKT69

transition, as will be demonstrated later on with a straightforward counter-example of a strongly70

out-of-equilibrium system. For this reason, it has been a constant matter of interest what is the71

nature of the various polariton phases, what are the observables that allow to determine a QLRO,72

if any, and how they compare with equilibrium 2D condensates and with lasers29�35.73
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Equilibrium vs out-of-equilibrium74

Recently, thanks to a new generation of samples with record polariton lifetimes, the thermaliza-75

tion across the condensation threshold has been reported via constrained �tting to Bose�Einstein76

distribution, suggesting a weaker e�ect of dissipation in these systems36. However, to unravel the77

mechanisms that drive the transition, and characterize its departure from the equilibrium condition,78

it is crucial to measure the correlations between distant points in space and time as we move from79

the disordered to the quasi-ordered regime13,14,37,38. So far, all attempts in this direction have been80

thwarted, not only because of the polariton lifetime being much shorter than the thermalization81

time and the fragmentation induced by sample inhomogeneities39,40, but also because of the small82

extents of the condensate. Indeed, earlier measurements of coherence25,41,42 were limited to the83

small spatial extension of the exciton reservoir set by the excitation spot, which could result in an84

e�ective trapping mechanism43 and �nite-size e�ects30.85

BKT transition in exciton-polaritons86

In this work, using a high quality sample (in terms of long lifetimes and spatial homogeneity) to form87

and control a reservoir-free condensate of polaritons over a largely extended spatial region, we make88

the �rst observation in any system of the transition to a QLRO phase both in spatial and in temporal89

domains. Remarkably, the convergence of spatial and temporal decay of coherence allows us to90

identify the connection with the classic equilibrium BKT scenario, in which for systems with linear91

spectrum the exponents take exactly the same value α ≤ 1/414. Stochastic simulations tuned to92

the experimental conditions, that reproduce the experimental observations in both space and time,93

further allow us to track vortices in each realisation of the condensate, con�rming the topological94

origin of the transition. All these results settle the BKT nature of the 2D phase-transition for95

polaritons in high quality samples, providing the equilibrium limit of driven/dissipative systems.96

For shorter lifetimes, it is known that the transition departs from the equilibrium condition28 and,97

at larger densities, di�erent mechanisms will prevail over topological ordering44. We show here that98

for a strongly out-of-equilibrium microcavity (in the weak coupling regime), the power-law decay of99

the �rst order coherence is observed only in space but not in time. We therefore demonstrate not100

only that low-density polariton condensates can undergo an equilibrium BKT transition like cold101

atoms, but also that spatial correlations alone do not allow to distinguish between a photon laser102

and a BKT phase.103
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Figure 2. Two dimensional �rst order spatial correlations. Maps of |g(1)(r)| as extracted from

the interferogram (Fig. 1b) relative to an area of the sample of about 80 µm×60 µm and corresponding to

di�erent densities d = (0.05, 0.3, 0.5, 1.3, 3, 4)dth in (a, b, c, d, e, f,) respectively.

Formation of a polariton condensate104

The mechanism used to form an extended polariton condensate is sketched in Fig. 1a. The sample105

is excited non-resonantly (details in Supplementary Information), leading to the formation of an106

exciton reservoir (yellow region in Fig. 1a) which is localised within the pumping spot area due to107

the low exciton mobility. In turn, the repulsive interactions between excitons induce a blueshift108

of the polariton energy at the centre of the pumping spot (the dashed-white line in Fig. 1a shows109

the contour along the x direction and crossing the excitation spot). As can be seen, the exciting110

beam generates an energy blueshift corresponding to the Gaussian pro�le of the laser. Polaritons,111

which are formed in the exciton reservoir through energy relaxation, are much lighter particles than112

excitons and are accelerated outwards from the centre of the spot by the potential landscape45,46.113

We have recently demonstrated that in high quality 2D samples, the cloud of expanding polaritons114

relaxes through incoherent scattering processes into the ground state: when the stimulated scatter-115

ing prevails over losses, a uniform polariton condensate is formed over a wide spatial region outside116
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Figure 3. Coherence decay and BKT phase transition. a, b, c, Spatial decay of |g(1)(∆x)| (logarithmic

scale) and corresponding �tting residuals (linear scale) for: a, d = 0.1dth exponential decay (blue data), b,

d = 1.4dth stretched exponential decay (green data), c, d = 2.75dth power-law decay (red data). d, e, f,

Temporal decay of |g(1)(∆t)| (logarithmic scale) and corresponding �tting residuals (linear scale) for: d, d =

0.15dth Gaussian decay (yellow data), e, d = 1.3dth stretched exponential decay (green data), f, d = 2.7dth

power-law decay (red data). Note that the value of |g(1)(0)| < 1 is due to the time-averaged detection that

globally reduces the visibility of the interferograms, without changing the slope of the correlations decay

(see Supplementary Information). g, h, Blue line: β exponent evaluated by stretched-exponential �tting

of |g(1)(∆x)| in g, and |g(1)(∆t)| in h, versus the corresponding polariton densities. Red line: α exponent

evaluated by power-law �tting of |g(1)(∆x)| in g, and |g(1)(∆t)| in h, versus the corresponding polariton

densities. The same color legend used in panels a, b, c and d, e, f indicates the corresponding densities

(square markers) in panels g and h. Error bars are obtained from the �tting parameters (see Supplementary

Information).

the area of the pumping spot47. The light emitted by the sample carries all the information about117

the spatio-temporal correlations of the polariton �eld, that can be extracted as follows: the interfer-118

ograms (Fig. 1b) are obtained selecting a sample region without the exciton reservoir, such as the119

one indicated by a dashed rectangle in Fig. 1c, that is directed into the Michelson interferometer120

outlined in Fig. 1d. Here, the image is duplicated in the beam splitter and re�ected around the121

central point r0 in one arm of the interferometer, giving the interferogram shown in Fig. 1b. The122

�rst order correlation function at equal time g(1)(r,−r) (r0 = 0 is assumed) can then be measured123

between any two points symmetric about r0 as a function of their separation |2r| following the same124
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method used in Ref. [16] and reported in the Supplementary Information. The temporal coherence125

g(1)(t, t + ∆t) is measured by moving the long delay line, covering a distance corresponding to a126

temporal delay of more than 200 ps.127
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Figure 4. Decay of coherence from stochastic analysis of a homogeneous system. a,c,e Spatial

decay of coherence. Respectively, an exponential decay, a stretched exponential with β = 0.67 and a power-

law decay with α = 0.20. b,d,f, Temporal decay of coherence. Respectively, a stretched exponential with

β = 0.41, a stretched exponential with β = 0.27 and a power law with α = 0.20. These three cases are

indicated in g with blue, green and red vertical dashed lines. g, Exponents β of the stretched exponential �t,

for spatial (blue) and temporal (green). Exponents α of the power law �tting for spatial (red) and temporal

(orange).
128

129130

Spatial correlations and decay exponents131

The 2D maps of |g(1)(r,−r)|, extracted from the interferograms, are shown in Fig. 2 for di�erent132

values of the polariton density d in the lowest-energy state. The spatial extent of coherence, limited133

to the autocorrelation point at low densities (Fig. 2a-c), extends over larger distances above a134

threshold density dth (Fig. 2d), indicating that stimulated scattering starts prevailing over losses135



8

Figure 5. Vortex-antivortex distribution map. Top, Vortices (V) in red and anti-vortices (AV) in

black just before (left) and after (right) the BKT transition with parameters as in Fig. 4c and e, respectively.

Middle-Bottom The same as in Top but after �ltering o� in two steps high momentum states to eliminate

bound pairs. Such �ltering reveals the presence of free vortices. Note that there are no free vortices when

spatial and temporal coherence show algebraic decay (right) but there are some free vortices in the case of

stretched exponential decay of coherence (left). The underlying colour map shows the phase pro�le of the

�eld.

(see Supplementary information). For larger densities, a higher level of coherence is sustained over136

a wider spatial region of about 80 µm×60 µm (Fig. 2e). The longer coherence length for d > dth is137

unrelated to the dynamics of higher energy polaritons and corresponds to the formation of a uniform138

phase in the ground state over distances much larger than the healing length (see Supplementary139

Information). As shown in Fig. 2f, increasing further the excitation power results in the shrinking140

of the spatial extension of coherence due to the additional dephasing induced by the pump and the141

formation of excited states at higher energies46.142

In Fig. 3, we analyse the behaviour of coherence close to the density threshold in a more quan-
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titative way. The horizontal line pro�le of |g(1)(x,−x)| passing through r0, for ∆x > 0 (with

∆x ≡ 2x), is studied for increasing pumping powers (Fig. 3(a-c)). To allow a uniform description

across the transition, both power law and stretched exponential functions are used in the �tting

procedure:

|g(1)(x,−x)| = A|2x|−α (1)

|g(1)(x,−x)| = Ae−B|2x|
β
, (2)

with B a scale parameter for the x-axis and A ≤ 1 a space-independent amplitude factor (see143

Supplementary Information). For d < dth, the decay is exponential and it is well �tted by eq. (2)144

with β ≈ 1 (Fig. 3a). Approaching d = dth, the spatial decay of g
(1) becomes slower, but still faster145

than a power law (Fig. 3b). This transition regime is best described by a stretched exponential146

decay (β < 1) that becomes a power�law only at slightly higher densities d ≈ 2.7 dth (Fig. 3c) when147

a high degree of spatial coherence (>50 %) extends over distances of ≈ 50 µm. Remarkably, the148

slow decay shown in Fig. 3c can be best characterised by the exponent α = 0.22 (see Supplementary149

Information for a a comparison between the di�erent functional behaviours). In Fig. 3g, the α and150

β exponents are reported for di�erent densities (α can be extracted only for d > dth), showing the151

whole behaviour of the coherence decay across the transition into the QLRO. However, as will be152

shown in the following, it is essential to verify that a similar behaviour is also observed for the153

temporal correlations.154

Temporal correlations155

In Fig. 3(d-f), the temporal coherence at the autocorrelation point |g(1)(t, t+∆t)| is shown for three156

di�erent polariton densities. In Fig. 3h, the α and β exponents of equations (1) and (2) that best �t157

the experimental data are shown across the transition. Below threshold, coherence decays quickly158

and follows a Gaussian slope (β ≈ 2). At d = 1.3 dth, the temporal coherence can be best �tted by159

(2) with an exponent β ≈ 0.8 (or, with a slightly worst �t, with a power law of exponent α ≈ 0.57),160

while at d ≈ 2.7 dth, the long time behaviour clearly follows a power law with α = 0.2. The161

residuals analysis proves the agreement between the experimental data and the �tting model (see162

Supplementary Information). Crucially, also for time correlations, α < 0.25, which coincides, within163

the experimental accuracy, with the one obtained from the spatial coherence at the corresponding164

density.165
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Exact simulations for an homogeneous systems166

We performed complementary theoretical analysis, based on the exact solution of the stochastic167

equations of motions21, with the same microscopic parameters as the ones of the experiment. Our168

approach, which can be derived either from Keldysh �eld theory48 or the Fokker-Planck equations169

for the Wigner function18, is able to treat �uctuations beyond the mean �eld approximations and170

describes the dynamics of the whole �eld, accounting for both normal and super�uid polaritons (see171

Supplementary Information). Di�erently from previous works25, the condensate forms outside of172

the exciton reservoir, that is therefore not included in the model. Moreover, the process of injection173

and expansion of polaritons is described as an e�ective pumping mechanism, without assuming any174

particular constrain on the incoherent polariton population, and also the energy relaxation is not175

externally imposed by any speci�c term, given that the whole physics, including thermalisation176

and condensation, can be self-consistently obtained from the stochastic model (see Supplementary177

Information). This is indeed the most general setting used in statistical mechanics to describe178

the e�ect of external driving, dissipation and many-body interactions on the phase transitions in179

open quantum systems38,48. Here we observe the same crossover from an exponential via stretched180

exponential to an algebraic decay of coherence in space and time (Fig. 4) as for the experimental181

measurements. In particular, we see the spatial and temporal α being the same and always smaller182

then 1/4 above the BKT threshold (Fig. 4g), showing that the drive and dissipation do not prevail183

in this good quality sample in contrast to the earlier studied non-equilibrium cases21,25.184

Additionally, while the vortex-antivortex binding cannot be directly observed in the experiments,185

which average over many realisations, the numerical analysis is able to track the presence of free186

vortices in each single realisation, con�rming the topological origin of the transition. Indeed, we187

see clearly that, in the algebraically ordered state, free vortices do not survive and the pairing is188

complete (Fig. 5 right column). In contrast, the exponential and stretched-exponential regimes both189

show the presence of free vortices (Fig. 5 left), the number of which decreases as we move across the190

transition. Since the stretched exponential phase is always associated with some presence of free191

vortices, this supports that we are observing a BKT crossover rather than a Kardar-Parisi-Zhang192

(KPZ) phase19. It is interesting to note here that the KPZ physics is indeed the paradigmatic193

model for a genuinely non-equilibrium phase transition and its manifestation in the optical domain194

of polariton condensates is currently at the centre of intense investigation38. However, the expected195

critical length for the KPZ phase is beyond the experimentally achievable length-scales in our long-196

lifetime, incoherently driven microcavity (see Supplementary Information for further discussion).197
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Figure 6. Spatial and temporal coherence in weak coupling regime. a, Spatial coherence showing a

power-law decay with α = 0.25. b, Temporal decay of coherence with stretched exponential �tting exponent

β = 1.8.

Temporal correlations for a VCSEL198

Finally, to demonstrate the importance of the simultaneous observation of space and time correla-199

tions for optical systems, and in general as we move from equilibrium towards out-of-equilibrium,200

we analyze the coherence behaviour of a microcavity where driven/dissipative dynamics clearly201

prevail. Using a sample with a lower quality factor and less quantum wells, we induce, under202

high non-resonant pumping, the photon-laser regime as in a vertical cavity surface emitting laser203

(VCSEL)44,49. Despite the fact that this system is strongly out-of-equilibrium, it shows a power-law204

decay of spatial coherence with α = 0.25 (Fig. 6a) within the pumping spot region (with a radius205

of about 10 µm). Remarkably, the behaviour of spatial correlations is very similar to what obtained206

in Ref [25], but the temporal coherence, shown in Fig. 6b, follows a quasi-Gaussian decay, not207

compatible with the algebraic order characteristic of the BKT phase. This shows that a consistent208

behaviour between time and space is necessary to evidence the BKT transition in driven/dissipative209

systems.210

Outlook211

The formation of an ordered phase in two-dimensional driven/dissipative ensembles of bosonic212

quasiparticles is observed in both spatial and temporal correlations across the transition. The213

collective behavior of exciton-polaritons in semiconductor microcavities lies at the interface between214

equilibrium and out-of-equilibrium phase transitions, and it has been often compared both to atomic215

condensates and to photon lasers. We show that the measurement of spatial correlations g(1)(r)216

alone is not su�cient to establish whether an open/dissipative system is in the BKT phase. Instead,217

two distinct measurements, one in time and one in space domain, are needed. Satisfying this218
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requirement, we report a power-law decay of coherence with the onset of the algebraic order at the219

same relative density and comparable exponents for both space and time correlations. We should220

stress that the exceptionally long polariton lifetime in the present sample allows us to reach the221

BKT phase transition at low densities, and in a region without the excitonic reservoir, resulting222

in a lower level of dephasing. In our experiments, the absence of any trapping mechanism, be it223

from the exciton reservoir or potential minima, allows us to avoid the in�uence of �nite-size e�ects224

in the temporal dynamics of the autocorrelation14. Simulations with stochastic equations match225

perfectly the experimental results and demonstrate that the underlying mechanism of the transition226

is of the BKT type, i.e., a topological ordering of free vortices into bound pairs, resulting in the227

coherence build up both in space and time. All these observations validate that polaritons can228

undergo phase-transitions following the standard BKT picture, and ful�ll the expected conditions229

of thermal equilibrium despite their driven/dissipative nature. Now that the equilibrium character230

of polaritons becomes a tuneable parameter, the study of driven/dissipative phase transitions and231

of the universal scaling laws is within reach in this solid state device.232
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