5,597 research outputs found

    Farm Diversification in Relation to Landscape Properties

    Get PDF
    Current European Common Agricultural Policy (CAP) has been moving from production support subsidies to direct decoupled income support. The emergence in policy making of the concept of multifunctional agriculture leads to the recognition that a farmer produces more than food: he produces jointly both commodity and non-commodity goods. Environmental contracts were developed in order to encourage the provision of non-commodity goods such as landscape or biodiversity. Next to these contracts, other activities as for example recreation can be observed. They are the result of farm diversification. The role of location in farmers’ decision making to diversify is pointed out in literature but geographical information is generally reduced to the location within a political delimitation unit the empirical work. Objective of this paper is two-fold. Firstly, it addresses the role of location, in term of site specific natural conditions as well as neighbouring emerging dynamics in farmer’s decision making to diversify. Attention is paid to number of activities as well as the specific types of activities, notably green services, daily recreation and other farm-linked services. Secondly, this paper introduces income from agriculture explicitly allowing testing short term price sensitivity. It was found that attractive landscape is a driver for diversification as these landscape offer more opportunities. Furthermore, diversification is responsive to price. Thirdly, role of density of past multifunctional activities in the neighborhood influences farm diversification: multifunctional activities create an externality effects as new activities emerge next to already existing ones. This dynamic may lead to the emergence of ‘multifunctional hotspots’ in landscape.Farmer diversification, landscape services, location, Farm Management, Land Economics/Use,

    Предпосылки автоматизации процесса скрининга в медицинских учреждениях

    Get PDF

    The scattering from generalized Cantor fractals

    Full text link
    We consider a fractal with a variable fractal dimension, which is a generalization of the well known triadic Cantor set. In contrast with the usual Cantor set, the fractal dimension is controlled using a scaling factor, and can vary from zero to one in one dimension and from zero to three in three dimensions. The intensity profile of small-angle scattering from the generalized Cantor fractal in three dimensions is calculated. The system is generated by a set of iterative rules, each iteration corresponding to a certain fractal generation. Small-angle scattering is considered from monodispersive sets, which are randomly oriented and placed. The scattering intensities represent minima and maxima superimposed on a power law decay, with the exponent equal to the fractal dimension of the scatterer, but the minima and maxima are damped with increasing polydispersity of the fractal sets. It is shown that for a finite generation of the fractal, the exponent changes at sufficiently large wave vectors from the fractal dimension to four, the value given by the usual Porod law. It is shown that the number of particles of which the fractal is composed can be estimated from the value of the boundary between the fractal and Porod regions. The radius of gyration of the fractal is calculated analytically.Comment: 8 pages, 4 figures, accepted for publication in J. Appl. Crys

    First order wetting of rough substrates and quantum unbinding

    Full text link
    Replica and functional renormalization group methods show that, with short range substrate forces or in strong fluctuation regimes, wetting of a self-affine rough wall in 2D turns first-order as soon as the wall roughness exponent exceeds the anisotropy index of bulk interface fluctuations. Different thresholds apply with long range forces in mean field regimes. For bond-disordered bulk, fixed point stability suggests similar results, which ultimately rely on basic properties of quantum bound states with asymptotically power-law repulsive potentials.Comment: 11 pages, 1 figur

    A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

    Full text link
    In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy's uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated

    Partially Blind Domain Adaptation for Age Prediction from {DNA} Methylation Data

    Get PDF
    Over the last years, huge resources of biological and medical data have become available for research. This data offers great chances for machine learning applications in health care, e.g. for precision medicine, but is also challenging to analyze. Typical challenges include a large number of possibly correlated features and heterogeneity in the data. One flourishing field of biological research in which this is relevant is epigenetics. Here, especially large amounts of DNA methylation data have emerged. This epigenetic mark has been used to predict a donor's 'epigenetic age' and increased epigenetic aging has been linked to lifestyle and disease history. In this paper we propose an adaptive model which performs feature selection for each test sample individually based on the distribution of the input data. The method can be seen as partially blind domain adaptation. We apply the model to the problem of age prediction based on DNA methylation data from a variety of tissues, and compare it to a standard model, which does not take heterogeneity into account. The standard approach has particularly bad performance on one tissue type on which we show substantial improvement with our new adaptive approach even though no samples of that tissue were part of the training data

    He Scattering from Random Adsorbates, Disordered Compact Islands and Fractal Submonolayers: Intensity Manifestations of Surface Disorder

    Full text link
    A theoretical study is made on He scattering from three fundamental classes of disordered ad-layers: (a) Translationally random adsorbates, (b) disordered compact islands and (c) fractal submonolayers. The implications of the results to experimental studies of He scattering from disordered surfaces are discussed, and a combined experimental-theoretical study is made for Ag submonolayers on Pt(111). Some of the main theoretical findings are: (1) Structural aspects of the calculated intensities from translationally random clusters were found to be strongly correlated with those of individual clusters. (2) Low intensity Bragg interference peaks appear even for scattering from very small ad-islands, and contain information on the ad-island local electron structure. (3) For fractal islands, just as for islands with a different structure, the off-specular intensity depends on the parameters of the He/Ag interaction, and does not follow a universal power law as previously proposed in the literature. In the experimental-theoretical study of Ag on Pt(111), we use first experimental He scattering data from low-coverage (single adsorbate) systems to determine an empirical He/Ag-Pt potential of good quality. Then, we carry out He scattering calculations for high coverage and compare with experiments. The conclusions are that the actual experimental phase corresponds to small compact Ag clusters of narrow size distribution, translationally disordered on the surface.Comment: 36 double-spaced pages, 10 figures; accepted by J. Chem. Phys., scheduled to appear March 8. More info available at http://www.fh.huji.ac.il/~dani

    Development of a chromium-thoria alloy

    Get PDF
    Low temperature ductility and high temperature strength of pure chromium and chromium-thoria alloy prepared from vapor deposited powder

    A Cultured Learning Environment: Implementing a Problem- and Service-Based Microbiology Capstone Course to Assess Process- and Skill-Based Learning Objectives

    Get PDF
    In this study, a problem-based capstone course was designed to assess the University of Wyoming Microbiology Program’s skill-based and process-based student learning objectives. Students partnered with a local farm, a community garden, and a free downtown clinic in order to conceptualize, propose, perform, and present studies addressing problems experienced by these partners. Instructor assessments enabled understanding of student competencies, and according to external subject matter experts students demonstrated mastery of all learning objectives on the final research presentation. Community partners were completely satisfied with the students’ solutions, professionalism, and communication. Instructional diagnosis and student course evaluations showed satisfaction, engagement, and growth. Assessments enabled reflective practice by faculty and led to improvements of the capstone course and the microbiology program. Consequently, the course gained institutional support and an official course listing

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure
    corecore