2,381 research outputs found

    Cluster Analysis of Thermal Icequakes Using the Seismometer to Investigate Ice and Ocean Structure (SIIOS): Implications for Ocean World Seismology

    Get PDF
    Ocean Worlds are of high interest to the planetary community due to the potential habitability of their subsurface oceans. Over the next few decades several missions will be sent to ocean worlds including the Europa Clipper, Dragonfly, and possibly a Europa lander. The Dragonfly and Europa lander missions will carry seismic payloads tasked with detecting and locating seismic sources. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) is a NASA PSTAR funded project that investigates ocean world seismology using terrestrial analogs. The goals of the SIIOS experiment include quantitatively comparing flight-candidate seismometers to traditional instruments, comparing single-station approaches to a small-aperture array, and characterizing the local seismic environment of our field sites. Here we present an analysis of detected local events at our field sites at Gulkana Glacier in Alaska and in Northwest Greenland approximately 80 km North of Qaanaaq, Greenland. Both field sites passively recorded data for about two weeks. We deployed our experiment on Gulkana Glacier in September 2017 and in Greenland in June 2018. At Gulkana there was a nearby USGS weather station which recorded wind data. Temperature data was collected using the MERRA satellite. In Greenland we deployed our own weather station to collect temperature and wind data. Gulkana represents a noisier and more active environment. Temperatures fluctuated around 0C, allowing for surface runoff to occur during the day. The glacier had several moulins, and during deployment we heard several rockfalls from nearby mountains. In addition to the local environment, Gulkana is located close to an active plate boundary (relative to Greenland). This meant that there were more regional events recorded over two weeks, than in Greenland. Greenlands local environment was also quieter, and less active. Temperatures remained below freezing. The Greenland ice was much thicker than Gulkana (~850 m versus ~100 m) and our stations were above a subglacial lake. Both conditions can reduce event detections from basal motion. Lastly, we encased our Greenland array in an aluminum vault and buried it beneath the surface unlike our array in Gulkana where the instruments were at the surface and covered with plastic bins. The vault further insulated the array from thermal and atmospheric events

    The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage

    Get PDF
    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation

    Emergence: Key physical issues for deeper philosophical inquiries

    Full text link
    A sketch of three senses of emergence and a suggestive view on the emergence of time and the direction of time is presented. After trying to identify which issues philosophers interested in emergent phenomena in physics view as important I make several observations pertaining to the concepts, methodology and mechanisms required to understand emergence and describe a platform for its investigation. I then identify some key physical issues which I feel need be better appreciated by the philosophers in this pursuit. I end with some comments on one of these issues, that of coarse-graining and persistent structures.Comment: 16 pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    Emergence: Key physical issues for deeper philosophical inquiries

    Full text link
    A sketch of three senses of emergence and a suggestive view on the emergence of time and the direction of time is presented. After trying to identify which issues philosophers interested in emergent phenomena in physics view as important I make several observations pertaining to the concepts, methodology and mechanisms required to understand emergence and describe a platform for its investigation. I then identify some key physical issues which I feel need be better appreciated by the philosophers in this pursuit. I end with some comments on one of these issues, that of coarse-graining and persistent structures.Comment: 16 pages. Invited Talk at the Heinz von Foerster Centenary International Conference on Self-Organization and Emergence: Emergent Quantum Mechanics (EmerQuM11). Nov. 10-13, 2011, Vienna, Austria. Proceedings to appear in J. Phys. (Conf. Series

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Heppa III Intercomparison Experiment on Electron Precipitation Impacts: 2. Model‐Measurement Intercomparison of Nitric Oxide (NO) During a Geomagnetic Storm in April 2010

    Get PDF
    Precipitating auroral and radiation belt electrons are considered to play an important part in the natural forcing of the middle atmosphere with a possible impact on the climate system. Recent studies suggest that this forcing is underestimated in current chemistry-climate models. The HEPPA III intercomparison experiment is a collective effort to address this point. In this study, we apply electron ionization rates from three data-sets in four chemistry-climate models during a geomagnetically active period in April 2010. Results are evaluated by comparison with observations of nitric oxide (NO) in the mesosphere and lower thermosphere. Differences between the ionization rate data-sets have been assessed in a companion study. In the lower thermosphere, NO densities differ by up to one order of magnitude between models using the same ionization rate data-sets due to differences in the treatment of NO formation, model climatology, and model top height. However, a good agreement in the spatial and temporal variability of NO with observations lends confidence that the electron ionization is represented well above 80 km. In the mesosphere, the averages of model results from all chemistry-climate models differ consistently with the differences in the ionization-rate data-sets, but are within the spread of the observations, so no clear assessment on their comparative validity can be provided. However, observed enhanced amounts of NO in the mid-mesosphere below 70 km suggest a relevant contribution of the high-energy tail of the electron distribution to the hemispheric NO budget during and after the geomagnetic storm on April 6

    The atrial and ventricular myocardial proteome of endstage lamin heart disease

    Get PDF
    Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses

    Determinants of Restaurant Systematic Risk: A Reexamination

    Get PDF
    This study reexamines determinants of the systematic risk or beta of restaurant firms based on the financial data of 75 U.S. restaurant firms from 1996 through 1999. Our weighted least-squares regression analysis found that restaurant systematic risk correlated negatively with assets turnover but positively with quick ratio. The findings suggest that high efficiency in generating sales revenue helps lower the systematic risk, while excess liquidity tends to increase the risk
    corecore