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ABSTRACT 
 
Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, 
but have the problem of forming volatile chromia species that lead to cathode poisoning. 
This project has focused both on optimization of  ferritic alloys for SOFC applications 
and evaluating the possibility of using alternative materials. 
 The initial efforts involved studying the oxidation behavior of a variety of 
chromia-forming ferritic stainless steels in the temperature range 700-900˚C in 
atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide 
variety of oxidation behavior based on composition.  

A method for reducing the vaporization is to add alloying elements that lead to the 
formation of a thermally grown oxide layer over the protective chromia.  Several 
commercial steels form manganese chromate on the surface.  This same approach, 
combined with observations of TiO2 overlayer formation on the chromia forming,  Ni-
based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti 
alloys (X=0–4 wt%).  Oxidation testing has indicated that this approach results in 
significant reduction in chromia evaporation.  Unfortunately, the Ti also results in 
accelerated chromia scale growth.  

Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell 
(SOFC) interconnect alloys have also been investigated. A key failure mechanism for 
interconnects is the spallation of the chromia scale that forms on the alloy, as it is 
exposed to fuel cell environments. Indentation testing methods to measure the critical 
energy release rate (Gc) associated with the spallation of chromia scale/alloy systems 
have been evaluated. This approach has been used to evaluate the thermomechanical 
stability of chromia films as a function of oxidation exposure. 

The oxidation of pure nickel in SOFC environments was evaluated using 
thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point 
probe was used to measure the area-specific resistance (ASR) to estimate the electrical 
degradation of the interconnect.  In addition to the baseline study of pure nickel, steps 
were taken to decrease the ASR through alloying and surface modifications. Finally, high 
conductivity composite systems, consisting of nickel and silver, were studied.  These 
systems utilize high conductivity silver pathways through nickel while maintaining the 
mechanical stability that a nickel matrix provides. 
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INTRODUCTION 
Solid oxide fuel cells provide a potential way to generate electricity with high 

efficiency and low pollution. The operating principles of fuel cells have been known for 
over 100 years and low-temperature fuel cells provided the electric power on all the 
Gemini and Apollo spacecraft.  However, fuel cells have not achieved widespread 
commercial use for a number of economic and technical reasons. 

One of the most important technical challenges for solid oxide fuel cells, which 
operate in the temperature range 700°-900°C, is the design of interconnects (current 
collectors).  These components, in addition to electrically connecting individual cells in a 
stack, must separate the anode compartment of one cell from the cathode compartment of 
the adjacent cell.  This means that one side of an interconnect is exposed to the fuel, 
typically hydrogen or hydrocarbons in which the oxygen partial pressure is low, and the 
other side is exposed to the oxidant, which is typically air with some amount of water 
vapor.  Metallic alloys have many attractive features as potential interconnect materials. 

Oxidation resistant alloys are designed to form one of three protective oxides:  
alumina, silica, or chromia.  Of these, the electrical resistivities of alumina and silica are 
much too high for interconnect applications.  For metallic interconnects, interconnect 
system resistance can be greatly increased by oxide layer thickening and spallation.  For 
chromia formers, evaporation of the chromia scale can severely degrade cathode 
performance.  Thus chromia scale growth, scale spallation and scale evaporation are the 
three principal “failure mechanisms” for interconnects forming chromia scales on their 
surfaces.  Because they are coupled, alloy changes to address one failure mechanism can 
affect one or more of the other failure mechanisms, making alloy design a complex task.   
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EXECUTIVE SUMMARY 
This project had four objectives: 

• To develop mechanism-based evaluation procedures for the stability of SOFC 
interconnect materials and to use these procedures to study and modify a group of 
alloys, which have already been identified as candidate interconnect materials, i.e. 
ferritic stainless steels. 

• To study fundamental aspects underlying the thermomechanical behavior of 
interconnect materials and develop accelerated testing protocols. (CMU 
Subcontract) 

• To investigate the potential for the use of “new” metals as interconnect materials. 
• Development of a durable, conductive ceramic/metal (cermet) material, suitable 

for long-term use as a contacting material in the cathode chamber of  SOFC. 
(WVU Subcontract) 

 
The program consisted of four major tasks aligned with its four objectives.   

Task 1:  Mechanism-based Evaluation Procedures 
 A variety of chromia-forming interconnect alloys were subjected to thermal 
cycling in air, in simulated anode gas (Ar-H2-H2O) and with simultaneous exposure to air 
on one side and simulated anode gas on the other.  Exposure temperatures range from 
700°C to 900°C.  Oxidation kinetics were tracked by mass change measurements and 
corresponding changes in oxide scale resistances were measured.  Exposed specimens 
were examined in cross-section by scanning electron microscopy (SEM) to document 
changes in structure with exposure.   
 Methods were studied to slow the growth of chromia scales on Cr and Ferritic 
alloys upon exposure to oxidizing gases. The effect of alloying additions (e.g. Mn, Ti) to 
ferritic steels to reduce harmful CrO3 and CrO2(OH)2 evaporation by forming a sealing 
outer layer over the chromia scale was evaluated. The ability of chromite coatings to 
reduce evaporation from chromia-forming interconnect alloys was investigated.   

Task 2:  Fundamental Aspects of Thermomechanical Behavior (CMU) 
Understanding the resistance of growing chromia scales to spallation requires a 

fundamental understanding of the mechanics of chromia adhesion.  From a fracture 
mechanics standpoint, the adherence of protective oxide scales to alloy substrates is 
governed by 1) the stored elastic energy in the scale, which drives delamination and 2) 
the fracture toughness of the alloy/oxide interface, which quantifies the resistance to 
fracture.   

The stored elastic energy in the scale is increased by increases in the scale 
thickness  and increases in the residual stress in the scale.  In this task, x-ray diffraction 
(XRD) was used to measure stresses in chromia films formed on pure chromium and 
chromia-forming alloys after the exposures described for Task 1.   

An indentation test was also used to measure the fracture toughness of 
chromia/alloy interfaces for the same exposures.  In the test, the chromia scale is 
penetrated by the indenter and the plastic deformation of the underlying substrate induces 
compressive radial strains in the substrate.  These strains are transferred to the coating 
and the associated coating stress drives the extension of a roughly axisymmetric interface 
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crack.  The interfacial toughness can be determined from the results of a mechanics 
analysis of the indentation problem and a measurement of the delamination radius.   

Task 3:  Alternative Material Choices 
 Metallic materials other than chromia-formers are being considered for use as low 
temperature SOFC interconnects.  Experiments similar to those described for Task 1 were 
performed on pure Ni.  Its only oxide, NiO, has no vapor species with high partial 
pressures and it has a higher electrical conductivity than chromia.  Also, NiO should not 
even form in the anode gas.   The doping of the NiO scale with SrO or CeO2 was 
investigated as a way to slow the growth rate.  Finally, the use of Ag conducting paths 
through Ni interconnects was studied. 
 
Task 4:  Development of Durable Contacting Material (WVU) 

At present, candidate cermets have been developed by ball-milling of various 
oxide powders with silver or silver-oxide powders, followed by dry-pressing and 
sintering in a high-temperature furnace.  The cermets were evaluated by SEM to 
determine the compatibility of silver with the candidate oxide materials, as well as the 
dispersion of silver throughout the cermet.  The cermets were also tested for 
hardness/ductility using Vickers hardness testing.  Conductivity was evaluated using a 
simple multimeter test to evaluate the resistance of the cermet.  A thermomechanical 
analyzer was also used to evaluate the CTE of the materials to verify compatibility with 
other SOFC components.  Lastly, cermets were placed in a high-temperature furnace to 
be exposed to the SOFC operating temperature (~800˚C), while a high-volume air flow 
was introduced to simulate the cathode environment of the SOFC.  

All measurements, conductivity, hardness, and mass were taken before and after 
exposure to the simulated cathode environment in order to make a determination of the 
effects on the cermet material. 
 
Major accomplishments of this project include: 

• Determined that even very small concentrations of Al or Si in ferritic alloys result 
in the formation of internal films with high electrical resistivity. 

• Discovered that exposure under some fuel cell operating conditions (e.g. water 
vapor) accelerates sigma phase formation in some ferritic stainless steels. Alloy 
purity is also important for retarding sigma-phase formation. 

• Discovered that it is possible to modify a ferritic steels to form an overlayer of 
TiO2 which suppresses the evaporation from the underlying chromia scale. 

• Determined that the growth rate of chromia on ferritic alloys can be greatly 
suppressed by surface doping with CeO2. 

• Adapted an indentation technique for measuring interfacial fracture toughnesses 
of oxides formed on interconnects and coatings applied to interconnects. 

• Found that the growth rate of NiO can be slowed significantly by surface doping 
with SrO or CeO2. 

• Found that, unlike ferrous alloys, the oxidation of Ni is not altered significantly 
under dual atmosphere conditions. 

• Showed that Ni interconnects containing Ag conduction paths are feasible. 
• Completed three M.S. theses and six Senior Projects. 
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PROJECT DESCRIPTION 
 

Objectives  

• To develop mechanism-based evaluation procedures for the stability of SOFC 
interconnect materials and to use these procedures to study and modify a group of 
alloys, which have already been identified as candidate interconnect materials, i.e. 
ferritic stainless steels. 

• To study fundamental aspects underlying the thermomechanical behavior of 
interconnect materials and develop accelerated testing protocols. (CMU 
Subcontract) 

• To investigate the potential for the use of “new” metals as interconnect materials. 
• To develop a durable, conductive ceramic/metal (cermet) material, suitable for 

long-term use as a contacting material in the cathode chamber of  SOFC. (WVU 
Subcontract) 

 

Approach 

The program consists of four major tasks aligned with its four objectives.   

Task 1:  Mechanism-based Evaluation Procedures 
 A variety of commercial chromia-forming interconnect alloys have been 
subjected to thermal cycling in air, in simulated anode gas (Ar-H2-H2O) and with 
simultaneous exposure to air on one side and simulated anode gas on the other.  
Combined exposures have been shown at PNNL to often yield different behavior than 
exposures with the same gas on both sides of the specimen.  Exposure temperatures range 
from 700°C to 900°C.  Oxidation kinetics have been tracked by mass change 
measurements and corresponding changes in oxide scale resistances have been measured.  
Exposed specimens have been examined in cross-section by scanning electron 
microscopy (SEM) to document changes in structure with exposure.   
 Methods have been studied to slow the growth of chromia scales on Cr and 
ferritic alloys with exposure, to decrease the contribution of the scale to interconnect 
resistance.  The effect of alloying additions (e.g. Mn, Ti) to ferritic steels to reduce 
harmful CrO3 and CrO2(OH)2 evaporation by forming a sealing outer layer over the 
chromia scale has been evaluated. The ability of chromite coatings to reduce evaporation 
from chromia-forming interconnect alloys has also been investigated.   

Task 2:  Fundamental Aspects of Thermomechanical Behavior (CMU) 
Understanding the resistance of growing chromia scales to spallation requires a 

fundamental understanding of the mechanics of chromia adhesion.  From a fracture 
mechanics standpoint, the adherence of protective oxide scales to alloy substrates is 
governed by 1) the stored elastic energy in the scale, which drives delamination and 2) 
the fracture toughness of the alloy/oxide interface, which quantifies the resistance to 
fracture.   

The stored elastic energy in the scale is increased by increases in the scale 
thickness (which can be measured by cross-section SEM) and increases in the residual 

 11



stress in the scale.  In this task, x-ray diffraction (XRD) has been used to measure stresses 
in chromia films formed on pure chromium and chromia-forming alloys after the 
exposures described for Task 1.   

An indentation test has also been used to quantify the fracture toughness of 
chromia/alloy interfaces for the same exposures.  In the test, the chromia scale is 
penetrated by the indenter and the plastic deformation of the underlying substrate induces 
compressive radial strains in the substrate.  These strains are transferred to the scale and 
the associated scale stress drives scale spallation.  Scales can spall as intact coatings, with 
an interface crack propagating radially outward, or spallation can occur as the debonding 
of small flakes, with the density of flaking decreasing with distance from the indent.  The 
interfacial toughness can be estimated from the results of a mechanics analysis of the 
indentation problem and a measurement of the extent of the delamination failures.   

Task 3:  Alternative Material Choices 
 Metallic materials other than chromia-formers are being considered for use as low 
temperature SOFC interconnects.  Experiments similar to those described for Task 1 have 
been performed on pure Ni.  Its only oxide, NiO, has no vapor species with high partial 
pressures and it has a higher electrical conductivity than chromia.  Also, NiO should not 
even form in the anode gas.   Also, the doping of the NiO scale with SrO or CeO2 has 
been investigated as a way to slow the growth rate.  Finally, the use of Ag conducting 
paths through Ni interconnects has been studied. 
 
Task 4:  Development of Durable Contacting Material (WVU) 

At present, candidate cermets have been developed by ball-milling of various 
oxide powders with silver or silver-oxide powders, followed by dry-pressing and 
sintering in a high-temperature furnace.  The cermets have been evaluated by SEM to 
determine the compatibility of silver with the candidate oxide materials, as well as the 
dispersion of silver throughout the cermet.  The cermets have also been tested for 
hardness/ductility using Vickers hardness testing.  Conductivity has been evaluated using 
a simple multimeter test to evaluate the resistance of the cermet.  A thermomechanical 
analyzer has also been used to evaluate the CTE of the materials to verify compatibility 
with other SOFC components.  Lastly, cermets have been placed in a high-temperature 
furnace to be exposed to the SOFC operating temperature (~800˚C), while a high-volume 
air flow is introduced to simulate the cathode environment of the SOFC.  

All measurements, conductivity, hardness, and mass were taken before and after 
exposure to the simulated cathode environment in order to make a determination of the 
effects on the cermet material. 
 
 
 
EXPERIMENTAL 
 
Task 1 
Cyclic Oxidation 

The cyclic oxidation of   a range of commercial ferritic stainless steels has been 
evaluated under a range of conditions pertinent to fuel cell operation. The alloys were: 
(Nominal compositions in wt%) 
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• E-BRITE (Fe-26 Cr-1 Mo - 0.2 Si) 
• 26Cr Ferritic (Fe-26Cr-1-Mo-2Mn-4.5Ni-1Si-1Al) 
• AL 453 (Fe-22 Cr-0.6 Al-0.3 Mn + 0.1Ce/La) 
• Crofer22 APU (Fe-22Cr-0.5Mn-0.08 Ti-0.016P-0.06 La) 

 
The exposure conditions for the ferritic alloys included: 

• T = 900°C and 700°C  (Limited experiments were performed at 800˚C) 
• One-Hour Cycles (45 min. hot, 15 min.cold) 
• Atmospheres 
- Dry Air (Simulated Cathode Gas) 

 - Air + 0.1 atm H2O (Simulated Moist Cathode Gas) 
 - Ar/H2/H2O (Simulated Anode Gas) 
  (  = 10 

2Op –17 atm at 900°C and 10 -20 at 700°C) 
 
The exposure apparatus used for these exposures is shown schematically in Figure 1. 
 

An additional group of model alloys was prepared in an attempt to grow a TiO2 
outer layer to suppress Cr volatility. Four heats of novel Fe-Cr-Ti alloys and one Ti-free 
control heat were produced in a vacuum induction melting furnace in the form of fifty-
pound ingots at ATI Allegheny Ludlum. The chemical composition of each ingot was 
determined at ATI Allegheny Ludlum’s Analytical Services laboratory (results reported 
in weight percent).  Extensive manufacturing trials were carried out to evaluate the 
processing characteristics of the high-Ti stainless steels. The ingots were successfully 
hot-rolled to 10 mm, surface conditioned, and then cold rolled to 1 and 2 mm thickness 
for oxidation testing and mechanical/physical property determination. 

 
 

 Heat Identification Code 
Element RV 2103 RV 2104 RV 2095 RV 2096 RV 2097 

Cr 21.8 21.8 22.1 22.2 22.2 
Ti 0.004 0.84 1.65 2.72 3.98 
Mn 0.033 0.030 0.031 0.024 0.023 
C 0.010 0.013 0.010 0.016 0.017 
N 0.018 0.018 0.011 0.008 0.008 
Ce 0.004 0.027 0.031 0.027 0.027 
La 0.001 0.009 0.012 0.012 0.010 
Al 0.005 0.005 0.008 0.030 0.049 
Si 0.043 0.042 0.036 0.020 0.020 
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Figure 1. Schematic diagram showing the apparatus to cyclically oxidize coupon 

specimens in gases with defined and controlled amounts of water vapor in 
air at a total pressure of 1 atm. 

 
The series of Fe-Cr-Ti alloys were subjected to cyclic tests as described above at 800oC 
in the dry air and moist cathode gas environments.  Long term exposures were also 
performed in these atmospheres at 760˚C.  As these are new alloys, thermogravimetric 
(TGA) measurements were also made.  In this test, the sample is held at constant 
temperature (no cycling) and the mass of the sample is continuously measured via a 
microbalance (Figure 2).  The results are used to determine the parabolic rate constant 
which is related to the oxide thickness.  The different atmospheres were used to exploit 
the fact that vaporization occurs faster in moist environments.  Comparing the results 
from moist and dry tests will give an idea of the effectiveness of the oxide in preventing 
vaporization.  The test parameters are as follows: 

• Alloys - Fe-22Cr-xTi (x=0-4), E-Brite, Crofer 
• T= 800oC, 900oC 
• Time = 1 week (168 hrs) 
• Atmosphere 

o Dry Air 
o Air + 0.1 atm H2O 
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Figure 2. Schematic diagram of the TGA apparatus for continuous measurement of 
mass during exposure. 

 
 
Dual Atmosphere Exposures 
 A dual atmosphere testing apparatus was also constructed (Figure 3).  The system 
consists of three parts.  The first is the specimen holder, which is a superalloy cup with a 
hole in the bottom, through which the fuel gas is introduced.  A mica washer 
(compressive seal) and the specimen are placed in the cup, covering the hole.  The second 
piece is a stainless steel tube that fits into the top of the cup.  It is used to introduce the 
oxidant gas to the system and is in contact with the specimen to supply further 
compression as necessary to seal the system.  These two pieces are placed in a quartz 
tube sealed with silicone stoppers, which is in turn in a vertical furnace.  Outside the 
system, opposing jacks at the ends of the cup and tube can be used to apply even further 
compression. 
 
Specimen Characterization 
Following exposure the oxidation products and alloy microstructure were characterized 
using x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy 
dispersive x-ray analysis (EDS). 
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Figure 3.   Schematic diagram of the dual atmosphere apparatus. 

Coated Specimens 
  Specimens coated with a sputtered LaCrO3 (some were also Sr doped) layer have 

been studied as these coatings may suppress oxide evaporation.  The substrates are as 
follows: 
 
• E-Brite (same as above) 
• AL 453 (same as above) 
• 29-4C (29Cr, 4 Mo, 0.5 Mn, 0.3 Ni, 0.35 Si) 
• Type 446 stainless steel (similar to E-Brite) 
• Inconel 600 (Ni based, 14-17 Cr, 6-1 Fe, max 1 Mn) 

 
X-ray diffraction showed that the coatings were amorphous in the as coated 

condition.  E-Brite and T-446 specimens were exposed in a dry air (simulated cathode 
gas) atmosphere at 900oC for 100 hours to crystallize the coating and to form a chromia 
layer.  It was observed during SEM analysis that the coatings had become porous during 
the exposure.  The porosity was considered to be detrimental to the effectiveness of the 
coating to prevent vaporization.  As a result, the subsequent experiments on the coated 
specimens involve annealing to crystallize the coatings.  However, the volume change 
during crystallization resulted in cracking of the coatings.  A limited number of 
experiments were performed to attempt to seal the cracks.  The techniques used were: 
• Aluminizing in a commercial CVD reactor. 
• Application of a liquid precursor to form La-oxides. 
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Area Specific Resistance Measurements 
 The electrical conductivity of the oxidized specimens was measured using a 4 
point probe technique.  Figure 4 is a schematic diagram of the apparatus that was 
constructed.  Electrical contact was made with the coupons, following oxidation using 
platinum paste (SPI Lot No.1090120).  The paste was painted in 6x6 mm squares on both 
sides of the specimen.  Following application of the platinum paste, the specimens were 
exposed at 600°C for one hour in dry air to drive off the binder in the paste, and to sinter 
the platinum particles.  Platinum paste was then reapplied to the specimen, which was 
followed by another annealing step at 600°C for one hour.  The surfaces of the specimens 
were then examined using an optical microscope or a scanning electron microscope to 
insure that the paste covered the desired area. The specimen is then placed between two 
Pt foils that previously had lead wires spot welded in place.  This sandwich is placed in 
the slot in the specimen holder and the screws are tightened to ensure physical contact is 
maintained throughout the test.  The specimen holder is placed on another holder that is 
attached to the reaction tube end cap.  This entire set up is then put into the furnace and 
heated.  The lead wires are attached to the current source/voltmeter. Current was applied 
using a Jandel Model RM2 current source, at a fixed amperage between 1000-10,000μA.  
The voltage drop across the specimen was also measured by the Keithley 2001 
multimeter.   A resistance is calculated via Ohm’s law, V=I*R.  The ASR is then 
calculated by multiplying the resistance by the known area of the Pt paint. 
 

       

 

Figure 4. Schematic diagram of the ASR apparatus and cartoon showing a close up 
of the specimen and electrode/lead attachments. 
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Task 2 
Indentation Testing 

 
The use of indentation as a means for inducing chromia scale spallation from 

interconnect alloys builds upon previous research by the PIs involving indentation of 
thermal barrier coating (TBC) systems [1, 2]. Testing goals in TBC and interconnect 
alloy systems are similar, where an understanding of mechanisms leading to coating 
spallation is needed, as are methods for accelerating cyclic thermal testing to evaluate 
new coating/substrate systems.   

The test for SOFC interconnects currently involves indenting the specimen using 
a Rockwell hardness tester and a conically-shaped brale indenter.  The chromia scale is 
penetrated by the indenter and the interconnect alloy substrate is plastically deformed.  
This plastic deformation induces compressive radial strains in the substrate, which are 
transferred to the chromia scale (there is a match of in-plane strains across the interface).  
This causes an axisymmetric region of spallation, either in the form of intermittent 
flaking of the scale or as an intact peeling of the scale from the substrate.  The radial 
extent of the debonding or its density as a function of radial distance can be related 
(through fracture modeling) to the fracture toughness or distribution of fracture toughness 
of the chromia/alloy interface.  Micrographs of debonds resulting from indentation are 
given in the section on Indentation Testing of Interface Adhesion.   

This type of test can be applied to other brittle coating systems deposited or 
grown on comparatively ductile substrates.  As part of this program, chromite-coated 
interconnect alloys are being tested, where indentation can induce spallation of the 
chromite coating and a chromia layer growing beneath it.  Similarly, this type of test may 
be applicable to the testing of other SOFC interfaces, such as those between sealant 
glasses and interconnect materials and those between electrolyte and anode layers in 
anode-supported cell structures.  
 
Indentation testing has been performed for the following alloy systems and exposure 
conditions, which parallel cyclic oxidation experiments described above: 

 
• E-BRITE in Air + 0.1 atm H2O:  100 Hrs. and 200 Hrs. @ 900°C 
• E-BRITE in Ar/H2/H2O (SAG):  264 Hrs, 364 Hrs. and 464 Hrs. @ 900°C 
• La0.8Sr0.2CrO3 on E-BRITE, AL 453 and AL 29-4C (from PNNL):  As Processed 
• LaCrO3 on Inconel and SS 446 (from Drexel/NETL):  As Processed 
• La0.8Sr0.2CrO3 on E-BRITE and LaCrO3 on SS 446:  100 Hrs. @ 900°C 
• Indentation tests on interconnect specimens exposed at 700°C is currently 

underway.   
 

A full description of these tests and their relation to cyclic oxidation testing is provided in 
the sections on Indentation Testing of Interface Adhesion and Accelerated Testing 
 
 
Task 3 

Experiments are being carried out on pure Ni as a possible alternative 
interconnect material since the oxygen partial pressure in the anode gas is too low to 
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oxidize Ni.  Efforts to decrease the electrical resistance of the interconnect oxide are 
twofold.  First, surface dopants are being used to reduce the scale thickness.  Pulsed laser 
deposition (PLD) is used to deposit thin films of SrO and CeO2 onto the surface of nickel.  
Second, the resistance introduced by the thermally grown oxide is being by-passed by the 
use of high conductivity pathways.  Silver is not considered as a possible interconnect 
material due to the high permeability of hydrogen and oxygen in silver, which causes 
water nucleation and mechanical instability.  However, silver may be able to provide a 
high conductivity pathway through another material.  Systems in which silver wires are 
passed through nickel and silver powder is melted into holes drilled in nickel have been 
examined. Figure 5 presents a schematic diagram of these composite specimens. 

 
Exposure Conditions 

The exposure conditions for the Ni-base materials are the same as those described 
for Task 1.  In addition, since some Ni alloys are available as tubes, a second dual 
atmosphere apparatus has been constructed, Figure 6. 

 
Specimen Characterization 
The specimen characterization techniques are the same as those described for Task 1.  
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Figure 5. Schematic diagram showing possible ways of using silver as a conducting 
path through nickel interconnects. 
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Figure 6. Schematic diagram of dual atmosphere apparatus for exposing tubular 

specimens. 
 
 
 
Task 4:  Development of Durable Contacting Material (WVU) 

Samples have been fabricated using various compositions of silver and differing 
oxides such as LSM and copper-oxide.  The samples were fabricated by dry pressing 
followed by sintering at high-temperature for various periods of time.  It was determined 
that this method did not result in samples that were robust enough for use in the high-
temperature evaporation experiments.  In order to fabricate samples that were durable 
enough for testing, it was decided that the method of fabrication be modified.  Instead of 
the ball-milling/pressing/sintering method previously used, it was decided that the 
oxidation of specific alloys would be a simpler method to produce reliable samples.  
Sterling silver has been identified as a candidate for use as a contacting material due to its 
favorable composition and low-cost.  Upon oxidation, the copper in the sample becomes 
copper-oxide which is meant to act as a barrier against evaporation of the silver in the 
sample, extending the usable life of the cermet.  Sterling silver has been tested in high-
temperature exposure alongside pure silver for a period of 27 weeks to gain an 
understanding of the performance of copper-oxide in protecting against silver 
evaporation. 
 
 
RESULTS AND DISCUSSION 

Task 1:  Mechanism-based Evaluation Procedures 
 The oxidation results for the ferritic stainless steels under fuel cell conditions have 
been reported previously [3].  These results have also been described in a manuscript 
accepted for publication in Oxidation of Metals.  This manuscript is attached as Appendix 
A.  

In attempts to reduce the growth rate of chromia, and, therefore, the electrical 
resistance, E-Brite samples have been doped with CeO2 using pulsed laser deposition 
(PLD).  Oxidation experiments for 100 hours at 800oC in air show that the doping 
drastically reduced the thickness of the chromia scale. 
 Sigma phase was observed to form at 700°C in the alloys with higher chromium 
concentrations, e.g. 26 Cr Ferritic and E-BRITE. Sigma phase is promoted in these alloys 
by the presence of Mo.  (additions of W would have a similar effect.)  It was also found 
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that impurity elements, such as Si, accelerated the formation of the sigma phase, e.g. 26 
Cr Ferritic developed this phase more rapidly than did E-BRITE.  A previously unknown 
result was that sigma phase formation was dramatically accelerated in atmospheres 
containing water vapor. Sigma- phase must be avoided since it is very brittle and tends to 
crack. 
 It was found that even small amounts of Al or Si (less than 0.5 wt %) in ferritic 
steels result in the formation of continuous alumina or silica films which greatly increases 
the ASR.  Therefore, future alloy development should hold these elements to the 
minimum values possible. 

A major problem with chromia-forming alloys is oxide volatility as CrO3, particularly 
in the cathode gas, since the CrO3 partial pressure increases with oxygen partial pressure. 
The volatile species are reduced at electrochemically active sites on the cathode during 
SOFC operation, which inhibits the required oxygen reduction.  Analysis of the Cr vapor 
species indicates water contents above about 0.1% in air result in partial pressures of 
CrO2(OH)2 which exceed the partial pressure of CrO3 and result in cathode poisoning.  
There are three potential solutions to this problem: 

1. Develop cathode materials that are not affected by Cr contamination. 
2. Suppress the evaporation of Cr-species from ferritic alloys. 
3. Develop Cr-free materials with suitable interconnect properties. 

The latter two approaches have been pursued in this research.  Approach 3 is described in 
Task 3 below. 

An ideal approach to suppressing Cr volatility would be to develop an alloy which 
forms a Cr-free oxide overlayer. Experiments on Ni-base superalloys indicated that Ti 
additions might provide such a layer. Four heats of novel Fe-Cr-Ti alloys with Ti 
contents varying between 1 and 4 wt% and one Ti-free control heat were produced by 
ATI Allegheny Ludlum. Ingots were melted in a vacuum induction furnace with a fifty 
pound crucible. These were hot and cold-worked to flat sheets approximately 0.5 mm 
thick by 150 mm wide without incident. 

Initial characterization of these Fe-Cr-Ti alloys was carried out to determine the 
effect of titanium on mechanical properties and on coefficient of thermal expansion. 
Figure 7 presents the results of duplicate tensile tests. Titanium was found to increase 
both yield and ultimate tensile strength and to decrease plastic elongation compared to 
the base Fe-22Cr alloy. The changes were significant for the two highest titanium alloys, 
where the ductility was particularly low and may be unacceptable for forming 
applications. 

Adding titanium was found to have a negligible effect on the linear coefficient of 
thermal expansion (CTE) compared to the base Fe-22Cr alloy at the lowest level of 
addition (0.84 wt.%). For the higher levels, titanium was observed to systematically 
increase the CTE (Figure 8). For additions ranging from 1.7 to 4.0 wt.%, the percentage 
change in CTE relative to the base Fe-22Cr alloy was found to obey the following 
relationship over the temperature range 600-900°C. 

 
( ) 5.3.%8.4(%) −×=Δ Tiwtα  
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Figure 7. Effect of titanium on the mechanical properties of a model Fe-22Cr alloy. 
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Figure 8. Effect of titanium on the linear coefficient of thermal expansion of a 

model Fe-22Cr alloy. 
 

Isothermal oxidation (Figures 9) experiments indicate that the Ti additions, at 
least to 3 wt%, accelerate the oxide growth rate at 900˚C relative to the Fe-Cr baseline 
alloy and CroFer. The same trend is evident in the cyclic oxidation kinetics at 800˚C 
(Figure 10). Figure 11 indicates that indeed these alloys can form a continuous TiO2 
overlayer, particularly for the higher Ti concentrations.  The cross-sections also indicate 
that there is significant internal oxidation of the Ti below the chromia scale. 
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Figure 9. TGA data for Fe-Cr-Ti alloys, Crofer, and E-Brite at 900˚C in dry and 

moist atmospheres. 
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Figure 10. Cyclic oxidation data for Fe-Cr-Ti alloys and Crofer, at 800˚C in dry and 

moist atmospheres. 
 
 

Long-term exposures of the Fe-Cr-Ti alloys were carried out in both ambient and 
humidified air at 760°C. Samples of E-BRITE alloy, which has been well-characterized 
in such tests, was included for comparison purposes. All of the samples were tested 
simultaneously. The humidified air environment was maintained by using a tube furnace 
of similar construction to Figure 1. Samples were cycled to room temperature once per 
week for weighing and inspection throughout the nominal 3,000 hour exposure period. 

In ambient air, the addition of titanium resulted in a consistent increase in weight 
gain up to a level of 2.7 wt.%, at which point the incremental weight gain appears to have 
reached a plateau (Figure 12). In air containing added water vapor, adding titanium has a 
notable effect on the rate of chromium oxide evaporation (Figure 13). The E-BRITE and 
Fe-22Cr model alloy samples both exhibit a tendency towards weight loss, with the 
cumulative weight gain after 3,000 hours approaching zero. Adding titanium to the base 
Fe-22Cr appears to reduce the rate of evaporation, with the effect proportional to the 
amount of added titanium. Figure 14 compares the two data sets by taking the ratio of 
weight gain after 3,000 hours in humidified air to that in ambient air. If evaporation is 
completely suppressed, this ratio should equal one. The nominal reduction in the effect of 
evaporation increases the ratio from about 0.3 for the base Fe-22Cr alloy to 
approximately 0.8 for the Fe-22Cr-2.7Ti alloy. There is no apparent effect caused by 
further increasing the titanium content to 4.0 wt. %. 
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Figure 11. Cross – sectional and surface SEM micrographs of alloys exposed for 96 

hrs at 900oC in dry air containing 0.004% (a&b), 0.84% (c&d), 1.65% 
(e&f), 2.78% (g&h), and 3.98% (i&j) titanium. 
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Figure 12. Long-term oxidation test results at 760°C in ambient air for Fe-22Cr 

alloys with added titanium (E-BRITE sample included for a reference). 
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Figure 13. Long-term oxidation test results at 760°C in air containing 7% water vapor 

for Fe-22Cr alloys with added titanium (E-BRITE sample included for a 
reference). 
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Figure 14. Comparison of weight gains after 3,000 hours at 760°C for Fe-22Cr alloys 

with added titanium – ratio of terminal weight gain in air containing 7% 
added water vapor to terminal weight gain in ambient air. 

 
The effect is shown in direct comparisons in Figures 15-17 for the Fe-22Cr base 

alloy, Fe-22Cr-1.7Ti, and Fe-22Cr-4.0Ti. It is apparent that increasing the titanium 
content reduces or eliminates the tendency for the overall weight gain curve to transition 
from net positive to negative, as observed for Fe-22Cr. There remains, however, a 
significant difference between the terminal weight gain results between the samples 
exposed in ambient and humidified air, with the humidified air testing always resulting in 
lower weight gains. It is difficult to deconvolute the observed oxidation kinetics for the 
Fe-Cr-Ti alloys, as the weight gain is made up of three factors – weight gain due to 
internal oxidation of titanium, weight gain due to external oxide formation (split between 
titanium oxide and chromium oxide layers), and weight loss due to oxide scale 
evaporation. There is uncertainty regarding the rates of these processes and there may be 
complex interactions between them. Therefore, it is difficult to absolutely quantify the 
efficacy of adding titanium to Fe-Cr alloys for reducing the tendency for chromium oxide 
evaporation in humidified air. 

Post-exposure structures similar to those presented for the short-term samples 
were noted in the long-term oxidation samples. Figure18 is a collection of micrographs 
taken after a 500 hour exposure at 816°C in ambient air, which resulted in well-
developed oxide scale microstructures. The titanium-free samples exhibited chromium 
oxide scales, with the oxide on the E-BRITE alloy being very thin and smooth, while the 
oxide scale on the Fe-22Cr alloy was thicker and more convoluted. The alloys containing 
titanium formed thick oxides which were rich in titanium on the surface. The oxides were 
highly variable in thickness from location to location, with maximum thickness 
increasing steadily with titanium content. All of the alloys had similar minimum 
thickness values, which may explain continued volatility at higher titanium levels due to 
potential thin spots in the titanium oxide outer layer. Beneath the oxide were zones of 
internal oxidation and internal nitridation. The depth and severity of the internal 
oxidation increased with titanium content. The number and size of the internal titanium 
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nitrides increased with titanium content, but the depth of the internally nitrided zone 
appeared to be fairly consistent for the titanium-bearing alloys. The presence of the 
internal nitridation layer is not typical for chromia-forming stainless steels in oxidizing 
environments and suggests that the titanium addition is permitting nitrogen transport 
through the oxide scale, either by physical access to the metal through cracks/voids, or by 
increased permeability through the condensed oxide. 

 
Fe-22Cr alloys  E-BRITE 

alloy 0.004% Ti 0.84% Ti 1.7% Ti 2.7%Ti 4.0%Ti 
oxide thickness 

(microns) 1.1 1.7-2.6 2.1-4.0 2.6-6.7 2.9-8.7 1.9-10.7 

internal oxide 
depth (microns) - - 5 9 21 23 

internal nitridation 
depth (microns) - - 23 21 21 23 
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Figure 15. Long-term oxidation test results for base Fe-22Cr alloy at 760°C in air 

with and without added water vapor. 
 
 
 
 
 
 
 
 
 
 
 

 28



0.0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000 2500 3000

Time (h)

W
e
ig

h
t 

C
h
a
n
g
e
 (

m
g
/c

m
2
)

Fe-22Cr-1.7Ti ambient air

Fe-22Cr-1.7Ti humidif ied air

 
Figure 16. Long-term oxidation test results for base Fe-22Cr-1.65Ti alloy at 760°C in 

air with and without added water vapor. 
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Figure 17. Long-term oxidation test results for base Fe-22Cr-4.0Ti alloy at 760°C in 

air with and without added water vapor. 
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Figure18. Metallographic cross-sections of different alloys exposed for 500 hours at 
816°C in ambient air (light optical micrographs). 
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 A limited number of experiments were conducted in an attempt to seal cracks in 
La0.8Sr0.2FeO3 coatings on a ferritic steel substrate.  Two sputter coated E-Brite 
specimens were annealed at 800˚C in argon to create cracks as the coatings crystallized.  
One specimen was then vapor-phase aluminized at Howmet Corporation using a standard 
procedure used for coating superalloys.  It was hoped that the aluminum would only 
deposit in the cracks so that subsequent heating in air would result in alumina in the 
cracks to suppress Cr evaporation.  The surface of this specimen after aluminizing is 
presented in Figure 19.  Examination of this surface using EDS indicated the aluminum 
had deposited on the La0.8Sr0.2FeO3 coating as well as in the cracks.  Therefore, 
subsequent oxidation would produce a continuous alumina layer, which would make an 
unacceptably large contribution to the ASR of the specimen.  Figure 20 shows the 
opposite side of the same specimen where the aluminum was deposited directly on to the 
E-Brite.  The aluminide coating cracked on cooling from the coating temperature 
presumably because the low CTE of E-Brite resulted in tensile stresses in the brittle 
coating.  
 The second specimen was coated with La2O3 from a liquid precursor.  The surface 
of the coating is presented in Figure 21.  There has been some deposition in the cracks.  
The La2O3 would tend to react with any volatile Cr-oxides to form the stable compound 
LaCrO3 which has been used as an interconnect coating. Therefore, there may be value in 
attempting to optimize the technique for crack sealing using liquid precursors. 
 
 

 
 
Figure 19. Surface of La-Sr-ferrite coating after aluminizing. 
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Figure 20. Surface of ferritic steel substrate after aluminizing. 
 
 

 
 
 
Figure 21. Surface of La-Sr-ferrite coating after deposition of La2O3 from a liquid 

precursor. 
 
 

Task 2:  Fundamental Aspects of Thermomechanical Behavior (CMU) 
 Previous reports have described the indentation fracture testing of ferritic stainless 
steel alloys exposed to simulated anode gas (SAG) Ar/H2/H2O environments.  Indented 
chromia scales formed in SAG debond as an intact coating, and the radial extent of the 
debonding observed in short-term exposures has been used to estimte the long-term 
exposure time when spallation can occur.  Previous reports also presented indentation 
results for ferritic stainless steels exposed in air with 0.1 atm H2O, representing a moist 
simulated cathode gas (SCG) environment.  When indented, those specimens exhibited a 
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flaking type of debonding with a decreasing density of flaking with radial distance from 
the indent.  Results for both types of tests are summarized in the paper by Dhanaraj et al. 
[4] which is attached as Appendix B. 
 In this past year, an image analysis technique has been developed to analyze the 
failures seen in SCG-exposed interconnects.  In these specimens, bonded areas are black 
or dark grey, which is the shade of the chromia scale.  Areas of spallation appear white or 
very light grey due to the exposed metal substrate.  The imaging technique involves 
quantifying the distribution of white/grey/black pixels in a single image in regions far 
from the indentation.  The distributions of greys in 5-7 rings around the indentation are 
also determined.  The percentage of debonding in a ring is determined by subtracting the 
distributions of grey from that ring from the far-field image distribution.  The result from 
the analysis of multiple rings is a plot of the percentage of debonding scale vs. radial 
distance from the debond.  Results from images taken after different exposures allow the 
tracking of debonding vs. radius as a function of exposure.   
 Figure 22 gives an example of results from this type of analysis.  In the figure, 
images from indentation of a 26 Cr ferritic alloy exposed in SCG from 10 to 200 hours 
have been analyzed.  Images at 10 and 200 hours are included in the figure, as is a plot of 
the percentage of debonding vs. R/a for different exposures.  R is the radial distance from 
the indentation and a is the radius of the indentation.  The images taken in these tests 
show a fairly consistent decrease in debonding density with radius and an increase in 
debonding density with exposure.  Plots of debond percentage vs. R/a from the image 
analyses are consistent with these qualitative observations.  As exposures are increased, 
the curves of percentage debonding rise, but the increases in debonding stop at 100-200 
hours of exposure.  At this point, some amount of debonding is observed even at radial 
distances where the strains due to indentation are almost zero.   
 
The conclusion from these results is that after 100-200 hours of exposure in SCG at 
900°C, spontaneous spallation (spallation that can occur without the use of indentation) 
has begun to occur.  At this point, spontaneous spalls (and perhaps some scale 
evaporation) act to keep the average thickness of the chromia scale more or less constant, 
so that plots of debond percentage vs. R/a reach a steady-state.  This is consistent with 
weight gain measurements performed as part of Task 1 of this project.  Weight gains in 
these specimens stop after 100 hrs of exposure and specimen weight remains constant 
from that point on.   
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Task 3 Alternative Materials 
 Experiments are being carried out on pure Ni as a possible alternative 
interconnect material since the oxygen partial pressure in the anode gas is too low to 
oxidize Ni.   The primary challenge in making Ni perform satisfactorily as an 
interconnect, is to reduce the electrical resistance of the thermally grown oxide, that 
forms on the cathode side during fuel cell operation. 

Efforts to decrease the electrical resistance of the interconnect oxide are twofold.  
First, we have tried to reduce the scale thickness by the use of surface dopants.  Pulsed 
laser deposition (PLD) is used to deposit thin films of SrO and CeO2 onto the surface of 
nickel.  These experiments have shown that CeO2 decreases the thickness of NiO by a 
factor of 4 (Figure 23) and SrO doping decreases it by a factor of 2.  ASR is proportional 
to scale thickness and the resistance decreases accordingly (Figure 24).  These dopants 
can be deposited by inexpensive techniques once the optimum dopants are identified. 

Tubes of Ni 200 have been exposed under dual atmosphere conditions in the 
apparatus presented in Figure 6.  Cross-sections of tubes for air-air and air-SAG 
exposures are presented in Figure 25 and indicate no effect of the dual-atmosphere. 

 
CeO2 – Coated Ni 

Uncoated Ni 

NiO

Ni

Ni 

NiO 

 
Figure 23. Effect of CeO2 deposited by pulsed laser deposition on the growth rate of 

NiO for 100 hours at 800oC in dry air. 
 

Finally, the resistance introduced by the thermally grown oxide has been by-
passed by the use of high conductivity pathways.  Silver is not considered as a possible 
interconnect material due to the high permeability of hydrogen and oxygen in silver, 
which causes water nucleation and mechanical instability.  However, silver may be able 
to provide a high conductivity pathway through another material.  Systems in which 
silver wires are passed through nickel and silver powder is melted into holes drilled in 
nickel have been examined.  Figure 26 shows the cross-section of a Ni specimen where 
Ag has been melted in a hole drilled in the Ni.  After exposure there is some porosity in 
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the silver and it appears the grain boundaries are delineated with pores far into the silver. 
Importantly, despite the porosity, the specimen had resistance values typical of a metal 
when measured at room temperature following exposure. In this configuration the Ni 
provides the physical integrity of the interconnect and the silver only provides the 
conduction path through the scale. 
 

 
Figure 24. ASR as a function of the square root of the oxidation time at 800˚C for 

pure Ni and CeO2-doped Ni. 
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Figure 25 Cross-sections of Ni 200 tubes exposed for 600 hours at 800˚C.  The top 

specimen was exposed with dry air inside and outside the tube.  The 
bottom specimen was exposed with Ar-10%H2O - 4%H2 inside the tube 
and dry air on the outside.  The micrograph was taken from the side 
exposed to air. 

 
 
 
Task 4:  Development of Durable Contacting Material (WVU) 

Sterling silver was tested in a high-temperature exposure experiment alongside 
pure silver to gain an understanding of the performance of copper-oxide in protecting 
against silver evaporation.  Samples were weighed on a weekly basis and the observed 
mass changes were used to determine the reduction in thickness of the samples.  Results 
from the evaporation data are shown in Figure 27. 

Very early on it appears that all samples exhibit similar evaporation behavior, 
however, after several weeks it appears that the rate of loss for the pure silver samples is 
lower than the sterling silver sample.  This trend continued throughout the 27-week 
experiment.  This is an unexpected result as the copper-oxide formed during oxidation 
was intended to protect the silver and reduce the rate of evaporation of the samples.   
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Figure 26. Silver Via, 800°C 100 Hours, exposed under dual atmospheric conditions.  

The upper surface was exposed to dry air while the lower surface was 
exposed to simulated anode gas of Ar-10%H2O-4%H2. 

 
 
Samples are also regularly examined for surface changes due to high-temperature 
exposure.  Examples of SEM micrographs for exposed samples are shown in Figure 28.   
As shown, the sample surfaces exhibit clearly different behavior which may affect the 
evaporation rates of the samples.   
 Time-series analysis was conducted to evaluate a particular section of the surface 
of a sterling silver sample during high-temperature exposure.  This analysis allows a 
better understanding of the evaporation characteristics of the samples as well as any 
interaction between the copper-oxide particles and silver in the sample.  Figure 29 
illustrates a time-series of backscatter micrographs for a typical sterling silver sample.  
The main changes that can be seen on the surface of the sample are the migration and 
agglomeration of the copper-oxide particles at the surface; silver can also be seen to 
recede at the edges of some copper-oxide particles indicated in the images.  This 
indicates that copper-oxide is volatile under SOFC operating conditions to act as an 
appropriate protective oxide in the cermet.  Further analysis of the interior regions of the  
exposed sterling silver samples revealed the coarsening of copper-oxide particles beneath 
the surface of the sample, indicating that this coarsening behavior may be an intrinsic 
phenomenon related to copper-oxide when exposed to an oxidizing environment.  Figure 
30 illustrates an example of SEM backscatter imaging of a typical interior section of a  
sterling silver sample after high-temperature exposure. 

Some basic analyses were conducted using the SEM micrographs from the 
exposure experiments.  It was noted that the silver visible between the copper-oxide 
particles on the surface of the sterling silver samples exhibited a much higher step-
density, number of observable steps per unit length, than was observed at the surface of 
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the pure silver samples.  Figure 31 shows the difference in step-density observed for each 
type of sample.   

In Summary, based on data collected over the six-month evaporation experiment 
as well as microstructure changes observed using time-series SEM analysis, it appears 
that copper oxide may be too volatile for use as a protective oxide in a contacting cermet 
for a solid-oxide fuel cell.  The data indicates that the sterling silver sample lost mass 
more rapidly than its pure silver counterpart, possibly due to the inability of the surface 
microstructure to reach the least favorable orientation to evaporation.  SEM analysis 
showed a much higher step density for sterling silver than for pure silver after high 
temperature exposure, illustrating a clear difference in surface microstructure, which 
could also affect the sample’s vaporization rate.  Time-series SEM analysis also 
illustrated migration and agglomeration of copper-oxide particles both at and below the 
surface of the sterling silver samples indicating possible issues of volatility with regard to 
copper-oxide.  Strontium-doped lanthanum manganite (LSM) and cerium-oxide will 
likely be the focus of future work as they may possess better properties with regard to 
electrical conductivity as well as stability under SOFC operating conditions than those 
observed in copper-oxide. 
 

Sterling Evap. Comparison

y = -1E-06x - 2E-07
R2 = 0.9958

y = -4E-07x - 2E-06
R2 = 0.9846

y = -5E-07x - 1E-06
R2 = 0.9894

-3.00E-05

-2.50E-05

-2.00E-05

-1.50E-05

-1.00E-05

-5.00E-06

0.00E+00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time (weeks)

Th
ic

kn
es

s 
R

ed
uc

tio
n 

(m
ic

ro
ns

)

Sterling Silver
Pure Ag (thin)
Pure Ag (Thick)
Linear (Sterling Silver)
Linear (Pure Ag (thin))
Linear (Pure Ag (Thick))

 
 
 
Figure 27.   Comparison of thickness reductions for various silver samples. 
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Figure 28.   SEM micrograph comparison of sterling and pure silver samples after  
                    3- week high-temperature exposure. 
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Figure 29.   Time-series analysis of sterling silver surface during high-temperature. 
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Figure 30. Fracture surfaces of sterling silver samples after high-temperature exposure. 
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Sterling silver vs Pure silver step density
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Figure 31.  Step-densities for pure silver and sterling silver samples. 
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ABSTRACT 

 The cyclic oxidation of a variety of chromia-forming ferritic stainless steels has been 

studied in the temperature range 700-900˚C in atmospheres relevant to solid oxide fuel cell 

operation. The most detrimental environment at 800˚C and 900˚C was found to be air with 10% 

water vapor.  This resulted in excessive oxide spallation or rapid scale growth. Impurities in the 

alloys, particularly Al and Si, were found to have a significant effect on the oxidation behavior.  

Oxide growth was slow at 700˚C but the higher Cr-content alloys were observed to form sigma-

phase at this temperature.  The sigma phase formation was accelerated by higher silicon contents 

and, remarkably, by the presence of water vapor in the exposure environment.  Alloys containing 

Mn were observed to form an outer layer of MnCr2O4 over the chromia scale.  The potential for 

this overlayer to suppress reactive evaporation of the chromia scales has been analyzed.   

 

KEYWORDS:  oxidation, ferritic steels, interconnects, oxide evaporation, sigma phase 

 

 



INTRODUCTION 

Solid oxide fuel cells provide a potential way to generate electricity with high efficiency 

and low pollution. The operating principles of fuel cells have been known for over 100 years and 

low-temperature fuel cells provided the electric power on all the Gemini and Apollo spacecraft.  

However, fuel cells have not achieved widespread commercial use for a number of economic and 

technical reasons. 

One of the most important technical challenges for planar solid oxide fuel cells, which 

operate in the temperature range 700-900°C, is the design of interconnects (current collectors).  

These components, in addition to drawing off the electric current, must separate the anode 

compartment of one cell from the cathode compartment of the adjacent cell.  This means that one 

side of an interconnect is exposed to the fuel, typically hydrogen or hydrocarbons in which the 

oxygen partial pressure is low, and the other side is exposed to the oxidant, which is typically air. 

The requirements for interconnects have been reviewed recently1-4.  Interconnect material 

requirements include a variety of physical, chemical, and electrical properties. The optimal 

interconnect material would have the following properties: 

1. Low electrical resistivity. 

2. Impermeability to anode and cathode gases. 

3. Stability in both anode and cathode gases under thermal cycling conditions. 

4. Chemical compatibility with other cell components. 

5. Close match in coefficient of thermal expansion with other components. 

6. Good mechanical properties. 

7. High thermal conductivity. 

8. Ease of fabrication. 



9. Low cost. 

 

Metallic interconnects are attractive in that they have favorable values of properties 2, 6, 7, 8, 

and 9.  Metallic materials also have low electrical resistance but they react with the gases to form 

oxide layers, which generally have high electrical resistivity. Oxidation resistant alloys are 

designed to form one of three protective oxides: alumina, silica, or chromia. Of these the 

electrical resistivities of alumina and silica are much too high for interconnect applications. 

Exact values of the resistivities of oxides depend on numerous factors but approximate values of 

the resistivities of silica, alumina, and chromia at 800˚C in air are presented in Table 1. 

Chromia scales grow much faster than alumina or silica but the resistivity of chromia is 

sufficiently lower to allow chromia-forming alloys to be considered as a “compromise” as 

interconnects.  The coefficient of thermal expansion of chromia-forming ferritic steels matches 

that of the ceramic components, particularly in the case of the common anode supported SOFCs.  

The oxidation behavior of this class of alloy under conditions relevant to SOFC operation is the 

subject of this paper. 

 

Previous Studies of Metallic Interconnect Materials 

 A number of studies have been conducted on chromia-forming metallic interconnect 

materials, particularly with regard to their stability in the cathode and anode gases.   

 

Cathode Gas 

The cathode gas provides the oxidant for the cell and will generally consist of air. 

England and Vircar5 oxidized thin foils of the commercial Ni-base alloys Inconel 625, Inconel 



718, Hastelloy X, and Haynes 230 in air under isothermal conditions at temperatures between 

800 and 1100°C.  All the alloys formed scales consisting essentially of chromia and the apparent 

parabolic rate constants varied over more than an order of magnitude e.g. between 1 x 10-15 and 

2.8 x 10-14 g2/cm4s at 800°C.   

 Quadakkers et al6 have studied chromium-based alloys since they have lower coefficients 

of thermal expansion than the nickel based alloys. The addition of a Y2O3 dispersion improved 

the mechanical strength and lowered the oxidation rates of the  

alloys. A significant problem with Cr (and chromia-forming alloys) which has been recognized 

for many years7 is the reactive evaporation of chromia scales.  This is a particular problem in the 

cathode gas since the CrO3 partial pressure increases with oxygen partial pressure, as illustrated 

in Figure 18. The volatile species are reduced at electrochemically active sites on the cathode 

during SOFC operation, which inhibits the required oxygen reduction9.  Analysis of the Cr vapor 

species10 indicates water contents above about 0.01% in air result in partial pressures of 

CrO2(OH)2 which exceed the partial pressure of CrO3.   This will be discussed in more detail in a 

subsequent section of this paper. 

 A number of investigators have studied the behavior of ferritic stainless steels as 

interconnect materials since they have a good thermal expansion match with typical ceramic 

components of SOFCs.  Huang et al11 studied the isothermal oxidation of ferritic Fe – 26 wt% Cr 

alloys in air reporting a kP of 8.8 x 10-14 g2/cm4s at 800°C. Brylewski et al12 reported a similar 

value of  8.5 x 10-14 g2/cm4s for Fe-16 wt% Cr. Quadakkers et al13, 14 have developed model 

alloys based on the philosophy of: 

 



i. Using La additions to slow the growth rate of the chromia scale and improve the adherence 

of the scale to the alloy. 

ii. Making additions of Ti and Mn to form spinels on the chromia scale to reduce CrO3 

evaporation. 

iii. Maintaining Al and Si levels as low as possible to prevent the formation of electrically 

insulating alumina or silica layers. 

 

(The last point is quite important in that many commercial Fe- and Ni-base alloys, which are 

nominally chromia-formers, contain sufficient Al and/or Si so that, under certain exposure 

conditions, alumina or silica can form between the chromia layer and the alloy.) 

 The work of Quadakkers et al has lead to the commercialization by ThyssenKrupp VDM 

of a ferritic alloy, Crofer 22 APU, specifically designed for fuel cell applications.  Yang et al15 

have reported the results of cursory studies of the oxidation behavior of this alloy. 

The area specific resistance (ASR) was reported in Ref. 11 for scales formed during 24 hour 

exposures in air at 900°C.  The ASR measured at 900°C with Ag electrodes was on the order of 

0.02 Ωcm2.  Quadakkers et al13 performed in-situ measurements of the ASR of chromia scales 

forming at 800˚C on one of the modified ferritic alloy alloys described above.  The ASR 

(measured at 800˚C) after 100 hours of oxidation was approximately 0.01 Ωcm2 and increased to 

approximately 0.1 Ωcm2 after 8000 hours.  

 

Anode Gas 

 The anode gas consists of the fuel (typically hydrogen or hydrocarbons) and the products 

of combustion (water vapor and, possibly, CO and CO2). England and Vircar16 oxidized thin 



foils of the commercial Ni-base alloys Inconel 625, Inconel 718, Hastelloy X, and Haynes 230 in 

hydrogen, which was saturated with water at 40°C under isothermal conditions at temperatures 

between 700 and 1100°C.  The growth rate of the chromia scales at 800°C were higher than 

those observed in air5 for the same alloys and the electrical resistance of the scales was higher 

than for those formed in air. 

 Quadakkers et al17-19 have studied pure Cr and yttria-dispersed Cr at 950 and 1000°C in 

Ar/H2/H2O mixtures.  They too observed larger mass gains in H2/H2O mixtures but correctly 

point out that this is the result of mass losses from CrO3 evaporation in air, which are minimal at 

the reduced oxygen partial pressures in H2/H2O mixtures.  One rather surprising result of this 

study was that the chromia scales were substantially more adherent when formed in H2/H2O 

mixtures than in dry air.  It is well documented that spallation of alumina scales is accelerated by 

water vapor20, 21 so these results for chromia are in need of further study. 

 Quadakkers et al reported the chromia scales formed on ferritic stainless steels in 

simulated anode gas at 800°C were thinner than those formed in air13, 14. Brylewski et al12 

reported similar values of kP for oxidation in 94H2/6H2O and air. 

 

Dual Atmosphere Exposures 

 Yang et al22 observed a change in the oxide formed on stainless steels in air when a 

simulated anode gas was present on the opposite side of the specimen.  They hypothesized that 

this is the result of H diffusing from the anode side and affecting the oxide growth on the cathode 

side. 

 



       This paper presents results for the oxidation of ferritic stainless steels in single 

atmospheres which form a baseline for understanding oxidation in dual atmosphere conditions. 

 

EXPERIMENTAL 

 

Cyclic Oxidation 

The cyclic oxidation of   a range of ferritic stainless steels has been evaluated under a 

range of conditions pertinent to fuel cell operation. The alloys were: (Nominal compositions in 

Wt%) 

• E-BRITE (Fe-26 Cr-1 Mo - 0.2 Si) 

• 26Cr Ferritic (Fe-26Cr-1-Mo-2Mn-4.5Ni-1Si-1Al) 

• AL 453 (Fe-22 Cr-0.6 Al-0.3 Mn + 0.1Ce/La) 

• Crofer22 APU (Fe-22Cr-0.5Mn-0.08 Ti-0.016P-0.06 La) 

 

The exposure conditions included: 

• T = 900°C and 700°C  (Limited experiments were performed at 800˚C) 

• One-Hour Cycles (45 min. hot, 15 min.cold) 

• Atmospheres 

- Dry Air (Simulated Cathode Gas) 

 - Air + 0.1 atm H2O (Simulated Moist Cathode Gas) 

 - Ar/H2/H2O (Simulated Anode Gas) 

  (  = 10 
2Op –17 atm at 900°C and 10 -20 at 700°C) 

 



The exposure apparatus used for these exposures is shown schematically in Figure 2. 

 

Specimen Characterization 

Following exposure the oxidation products and alloy microstructure were characterized 

using x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray 

analysis (EDS). 

 

RESULTS AND DISCUSSION 

 

Cyclic Oxidation at 900°C 

The experiments at 900°C were designed as accelerated tests.  The duration of the test 

was 2000 cycles, which corresponded to 1500 hours at temperature (900°C).  Based on the 

temperature dependence of the parabolic rate constants reported for oxidation of Fe-26 wt% Cr 

in air 11, exposure for 1500 hours at 900°C should result in a chromia scale thickness comparable 

to that formed after about 16,000 hours at 800°C.  Thus, if one can assume the same oxidation 

mechanisms at 800 and 900°C, these experiments should simulate an exposure at 800°C for 

16,000 hours of hot time.  In the latter case 2000 cycles would correspond to the specimen being 

cycled to room temperature with a frequency of approximately twice per day. Since cyclic 

degradation can depend on cycle frequency, it is not clear how many cycles at 800°C would 

produce similar degradation. Correlation between the accelerated tests with operating conditions 

is an ongoing theme of this project. 

 The oxidation kinetics for exposure in dry air (simulated cathode gas) are presented in 

Figure 3.  The mass gains for Crofer22 APU correspond to literature values for the isothermal 



oxidation of ferritic alloys in air 11 while the mass gains for Fe-26Cr ferritic are somewhat 

smaller and those for Al 453 are somewhat larger.  The oxidation curves do not give evidence for 

substantial scale spallation. The results for duplicate specimens under all exposure conditions 

were in good agreement.  Therefore, subsequent plots will present the average data for the two 

specimens in a single curve. 

Figure 4 presents the corresponding oxidation kinetics in simulated anode gas.  The mass 

gains for Fe-26 Cr ferritic and Crofer are similar and are similar to those reported for isothermal 

oxidation of ferritic alloys in hydrogen-water vapor atmospheres 12.  The mass gains for AL 453 

are larger. 

Figure 5 presents the oxidation kinetics in air containing 10% water vapor.  This gas does 

not directly simulate a fuel cell atmosphere.  However, with the use of air, there are the 

possibilities that the air has not been dried, small seal leakages occur, or hydrogen diffuses to the 

cathode side and reacts with oxygen; therefore, it is not unreasonable to anticipate that the 

cathode gas may contain water vapor in some situations.  The mass changes for Fe-26Cr ferritic 

are similar to those in dry air.  However, the mass gains are far larger for Crofer, and AL 453 

than those observed in either of the other two atmospheres.  These observations are consistent 

with measurements of oxide thickness (presented in Table 2) and metallographic observations to 

be described below.  It is important to note that the simple analysis in the table can be 

compromised by both specimen deformation and internal oxidation, particularly in the case of 

Crofer, yielding significant differences between measured and calculated values. 

 Figure 6 presents cross-section micrographs of Fe-26Cr ferritic after exposures in all 

three atmospheres at 900°C.  The scales are similar and are consistent with the similar oxidation 

kinetics observed in the three environments.  The external scale consists of Cr2O3 and there is a 



fine distribution of Al-rich precipitates in the alloy below the scale.    Figure 7 shows more detail 

of the alloy/scale interface for Fe-26Cr.  There is a substantial amount of silica at this interface.  

It is not clear if this phase was responsible for the lack of acceleration of scale growth for 

exposures in air + 10% H2O.  However, it is believed that oxide spallation is primarily 

responsible for the thinner scales observed on Fe 26 Cr in this atmosphere.  Figure 8 shows a 

macroscopic surface photograph of Fe-26Cr ferritic after 847 cycles showing circular spalled 

areas.  Other areas were also observed where there were circular areas of thin oxide, which 

appeared to have reformed in spalled areas on subsequent cycles.  Spalling is also consistent with 

the data in Table 2.  The experimental mass gain for Fe-26Cr Ferritic in wet air is substantially 

smaller than that calculated from the oxide thickness. The mass changes in air + 0.1 atm H2O 

may also be influenced by evaporation of CrO2(OH)2, as will be discussed below. 

 Figure 9 presents cross-section micrographs of Crofer after exposure in all three 

environments.  The specimen exposed in dry air had a continuous layer of MnCr2O4 at the 

scale/gas interface with a chromia layer beneath.  Figure 10 indicates some internal oxidation 

below the chromia layer. These oxides were found to be Al-rich, although Al is not listed as an 

intentional component of this alloy. The specimen exposed in wet air exhibited a very thick 

scale, which is consistent with the large mass gain in this atmosphere. However, The MnCr2O4 is 

present as discontinuous particles at the scale/gas interface rather than as a continuous layer. 

Figure 11 shows a macroscopic photograph of a Crofer specimen oxidized in wet air.  This 

specimen is severely warped, presumably because of the extensive oxidation. Specimens 

exposed in dry air and simulated anode gas did not exhibit this deformation. The specimen 

exposed in simulated anode gas showed very little MnCr2O4 at the scale/gas interface and the 

chromia scale appeared somewhat ‘friable”.  The micrograph of this specimen in Figure 10 also 



shows an inclusion running parallel to the rolling direction of the sheet.  This was identified as a 

La-rich oxide. Similar inclusions, as well as Ti-nitrides were found throughout the as-received 

alloy. 

 Figures 12 and 13 present cross-section micrographs of AL 453 exposed in the three 

environments.  The striking feature in all environments is the extensive internal oxidation of Al 

below the chromia scale.  Table 2 indicates the measured mass gain of this alloy in all three 

environments is substantially larger than that calculated from the thickness of the external scale.  

The oxygen uptake in forming the internal oxides is responsible for this difference.  An 

additional feature of this alloy is the appearance of a layer of metallic Fe-Cr between the internal 

oxidation zone and the external chromia scale.  The origin of this layer has not yet been 

determined.  One possibility is extrusion of metal out from the zone of internal oxidation as the 

alumina precipitates form.    This phenomenon is discussed more fully below. 

 In summary, accelerated cyclic oxidation testing at 900°C has been investigated.  The 

most detrimental environment was found to be air with 10% water vapor.  This resulted in 

excessive oxide spallation from Fe-26Cr ferritic and rapid scale growth on Crofer22 APU and 

AL 453.   Huczkowski et al.23 have explained the accelerated oxidation of Crofer as resulting 

from the internal oxidation of Si and Al causing metallic protrusions.  This presumably increases 

the effective surface area of the alloy.  However, Figure 9 does not indicate a significant 

difference in the amount of internal oxidation or metal protrusions between the specimens 

exposed in dry air and air plus water vapor.  Therefore, it is not clear why the scale on Crofer 

grows faster in the presence of water vapor. 

 

 



Cyclic Oxidation at 800˚C 

 The accelerated oxide growth rate on Crofer at 900˚C, when exposed in air with 10% 

water vapor, prompted further investigation of this phenomenon at 800˚C.  In addition to Crofer 

several other alloys were studied.  These included JS-3, a model alloy (Fe-23Cr-0.39Mn-0.05Ti-

0.09La, wt%),with Si and Al contents less than 0.01 wt%,  and a second heat of Crofer (termed 

“New Crofer”) in which more care was used to reduce the Al and Si impurities, both provided by 

Dr. J. Quadakkers, Forschungszentrum, Jülich.  E-brite and Fe-26Cr-Ferritic were also included 

in this experiment.  The cyclic oxidation kinetics in air with 10% water vapor are presented in 

Figure 14.  The Crofer from the original heat exhibited accelerated oxidation similar to that at 

900˚C whereas the Crofer from the second heat (with lower Si and Al impurities) and JS-3 did 

not exhibit this tendency.  The 26 Cr Ferritic and E-brite began to show mass losses after short 

times as a combined result of spallation and scale evaporation. 

Figure 15 is a cross-section micrograph of Crofer after exposure for 2000 hours.  It shows 

significant internal oxidation of Al and silica forming at the scale alloy interface.  Figure 16 

shows a cross-section of the purer Crofer from the second heat.  There is substantially less 

internal oxidation but there is still a significant amount of metal protruding into the scale.  Figure 

17 shows a cross-section of JS-3.  There is some internal oxidation but no metal protruding into 

the scale. Huczkowski et al.23 observed most of the internal oxides to be TiO2.  However, some 

of the particles in Figure 17 are alumina and silica. 

 

Cyclic Oxidation at 700˚C 

Figures 18, 19, and 20 show the mass change vs. exposure time for samples at 700oC in 

dry air, Ar/H2/H2O, and air +0.1 atm H2O, respectively.  In all cases, AL 453 exhibited the 



largest mass gains, followed by Crofer and the 26 Cr Ferritic alloy.  In the moist air environment, 

the 26 Cr alloy showed small initial mass gains, but began to lose mass after ~400 cycles. 

 Figure 21 presents cross-section micrographs of Fe-26Cr Ferritic after exposures in all 

three atmospheres at 700°C.  The scales are similar.  The external scale consists of Cr2O3 and 

there is a fine distribution of Al-rich precipitates in the alloy below the scale and Si-rich particles 

are present at the scale/alloy interface.    The experimental mass change for Fe-26Cr Ferritic in 

wet air was observed to go negative after about 400 cycles. As was the case of the 900˚C 

experiments, the mass changes in air + 0.1 atm H2O may be influenced by evaporation of 

CrO2(OH)2, as will be discussed below. All of the Fe-26Cr specimens exposed at 700˚C formed 

sigma-phase.  The details of the formation of this undesirable brittle phase will be discussed in 

detail below.  

Figure 22 presents cross-section micrographs of Crofer after exposure in all three 

environments.  The specimen exposed in dry air had a layer of MnCr2O4 at the scale/gas 

interface with a chromia layer beneath although the layer was not as well developed as that at 

900˚C. There was also formation of internal Al-rich oxides at this temperature and these oxides 

had a tendency to form into semi-continuous bands.  Bands of Si-rich oxides formed at the 

alloy/chromia interface. 

 Figure 23 presents cross-section micrographs of AL 453 exposed in the three 

environments.  In all environments there was extensive internal oxidation of Al below the 

chromia scale and these oxides formed virtually continuous films.  Metallic regions were 

observed above the internal Al-oxides for the specimens exposed in air but were absent for 

exposures in SAG. 

 



Oxide Evaporation 

A significant problem with Cr (and chromia-forming alloys), which has been recognized 

for many years7, is the reactive evaporation of chromia scales. The formation of CrO3 by the 

reaction 
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becomes significant at high temperatures and high oxygen pressures.  The oxygen pressure effect 

is illustrated in Fig. 1[8]. (In the presence of water vapor, the predominant evaporating species 

may become CrO2 (OH)2 whose partial pressure increases with increasing H2O partial pressure, 

as indicated in Figure 2410.) The evaporation of CrO3 results in the continuous removal of the 

protective Cr2O3 scale so the diffusive transport through it is rapid.  The effect of the 

volatilization on the oxidation kinetics has been analyzed by Tedmon7.  The instantaneous 

change in scale thickness is the sum of two contributions:  thickening due to diffusion and 

thinning due to volatilization. 
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where  is a constant describing the diffusive process and ′kd ′k s  describes the rate of 
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where C is an integration constant to be evaluated from the initial conditions.  Taking x=0 at t=0 
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Initially, when the diffusion through a thin scale is rapid, the effect of CrO3 volatilization is not 

significant but, as the scale thickens, the rate of volatilization becomes comparable and then 

equal to the rate of diffusive growth.  This situation, paralinear oxidation, results in a limiting 

scale thickness, xo, for which dx/dt = 0.  Setting this condition in equation 3 yields 
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This problem, which is more serious in rapidly flowing gases, is one of the major limitations on 

the high temperature use of Cr2O3 forming alloys and coatings. 



 Evaporation is a particular problem in the cathode gas of solid oxide fuel cells (SOFCs) since 

the CrO3 partial pressure increases with oxygen partial pressure, as illustrated in Figure 1. The 

volatile species are reduced at electrochemically active sites on the cathode during SOFC 

operation, which inhibits the required oxygen reduction8.  Analysis of the Cr vapor species10 

indicates water contents above about 0.1% in air result in partial pressures of CrO2(OH)2 which 

exceed the partial pressure of CrO3.  Thus, maintaining the cathode gas as dry as possible is 

desirable. 

 Figures 1 and 24 are constructed for unit activities of Cr and Cr2O3, i.e. evaporation at 

high oxygen partial pressures occurs from pure chromia.  However, examination of the 

equilibrium constant for reaction 1 
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shows that, for a fixed oxygen partial pressure, the partial pressure of CrO3 will decrease as the 

activity of chromia is reduced.  Other things being equal, the evaporation rate should be directly 

proportional to the CrO3 partial pressure.  Therefore, the presence of an outer oxide layer with 

reduced chromia activity could slow the scale evaporation.  Coatings of La0.9Sr0.1CrO3 have been 

applied to ferritic alloys to limit CrO3 evaporation24. 

 The formation of a complex oxide over a chromia layer can also occur naturally during 

oxidation of some alloys.  Spinels (MCr2O4) have been observed to form over chromia scales 

growing on alloys containing the transition metals Fe, Ni, Co, and Mn. In some cases the spinels 

form before the chromia layer becomes continuous (transient oxidation) but in others the spinel 



forms by outward diffusion of the transition metal through the chromia layer.  Outer layers 

containing Fe and Mn have been known to form on stainless steels for many years25.  This is 

somewhat remarkable since the steel usually only contain about 1 % Mn.  The high mobility of 

Mn ions in chromia is also in agreement with theoretical studies26.  Crystal field theory 

calculations of the difference in stabilization energies for cations on octahedral versus tetrahedral 

sites in the hexagonal oxide ion sublattice of chromia lead to the prediction that the mobility of 

divalent cations should increase in the order Ni2+ : Cu2+ : Co2+ : Fe2+ : Mn2+ 26.  Figure 9 shows 

cross-sectional micrographs of Crofer 22, which contains approximately 0.5 wt% Mn, after 

exposure at 900˚C in dry air.  An outer layer of MnCr2O4 can be observed at the scale/gas 

interface. This layer is particularly well developed for the specimen oxidized in dry air. 

 The diffusion properties in the chromia will control the development of an outer spinel 

layer but the thermodynamic properties of the individual spinels will determine how much they 

decrease the activity of chromia.  Tretjakow and Schmalzried27 performed an extensive study of 

the thermodynamic properties of the spinels of Cr with Fe, Ni, Co, Mg, and Cu over the 

temperature range 1000 to 1500K.  They found that the standard Gibbs free energy change for 

the reaction 

 

  MO + Cr2O3 = MCr2O4   (8) 

 

was very similar for all the spinels, which would suggest they all would be similarly effective in 

lowering the activity of chromia.  Unfortunately, Mn was not included in this study and no data 

are listed for MnCr2O4 in the available thermodynamic data compilations [28].  In the present 

study the available thermodynamic data28 were used to catalog the properties of the spinels for 



which data are available and then to estimate the thermodynamic data for MnCr2O4. The data 

were used to estimate the partial pressure of CrO3 which would stand in equilibrium with each 

spinel at typical SOFC operating temperatures. 

 

 

Thermodynamic Calculations 

 

 The standard Gibbs free energies of formation (ΔG˚) for Cr2O3, Al2O3, FeO, NiO, CoO, 

MnO, MgO, FeCr2O4, NiCr2O4, CoCr2O4, MgCr2O4, and MnAl2O4, were taken from reference 

28 over the temperature range of interest 1000 to 1300K.  Data for the reaction 

 

  MnCr2O4 + Al2O3 = MnAl2O4 + Cr2O3   (9) 

 

were reported at one temperature (1373K) in reference 29.  This allowed the calculation of ΔG˚ 

for MnCr2O4 at 1373K and estimates of the standard entropy change (ΔS˚) for the reaction 

 

  MnO + Cr2O3 = MnCr2O4    (10) 

 

were used to extrapolate the data to lower temperatures. Figure 25 shows ΔG˚ for reaction 8 for 

Fe, Ni, Co, and Mg. The data for Fe, Ni, and Mg are similar while the values for Co are 

somewhat more negative.  Figure 26 presents the extrapolated data for Mn with the data for Ni as 

a basis for comparison.  It is clear that MnCr2O4 is much more stable than the other spinels.  The 

data from Figure 26 were used to calculate the equilibrium constant for reaction 10 which 



allowed the calculation of the activity of chromia, assuming saturation with MnO.  Insertion of 

this value in equation 7 allowed calculation of the CrO3 partial pressure in equilibrium with 

MnCr2O4 in air. These values are plotted in Figure 27 along with those for unit activity of 

chromia and those for LaCrO3. (The latter were calculated by inserting the activity data for 

chromia in LaCrO3 from reference 10 and presumably refer to La2O3-saturation.)  Figure 27 

indicates that the CrO3 partial pressure and, therefore, evaporation rate from a chromia forming 

alloy could be reduced by two orders of magnitude if a layer of MnO-saturated MnCr2O4 could 

be made to reliably form on the surface.  A dense, artificially applied coating of LaCrO3 could, in 

principle, achieve another order of magnitude reduction. 

 It should be noted that the low values of CrO3 partial pressure indicated to be in 

equilibrium with MnCr2O4 and LaCrO3 in Figure 27 were calculated assuming MnO and La2O3 

saturation, respectively. If layers of these compounds are present over a chromia film and begin 

to equilibrate with the underlying chromia the activity of chromia will increase and this will 

result in an increase in the CrO3 partial pressure.  In the limit of the layers becoming Cr2O3 

saturated the chromia activity will be unity and the CrO3 partial pressure will be given by the line 

for Cr2O3 in Figure 27.  The rate and extent of such equilibration will be determined by transport 

in the outer layer as well as loss of CrO3 to the gas phase. 

 All of the above comments will also pertain to the reduction of the partial pressure of 

CrO2(OH)2 over chromia-containing spinels in atmospheres containing water vapor. 

 

 

Formation of Oxide-free Zone Below the Chromia Scale  



A number of the cross-section micrographs presented above indicate oxide-free metallic 

regions between the external chromia scale and a zone of internal oxidation.  In the case of 

Crofer these regions were in the form of metallic globules protruding into the chromia scale, 

Figures 9, 10, 15, 16 and 22.  In the case of AL 453 a continuous, or nearly continuous, region 

formed below the chromia scale, Figures 12, 13, and 23. 

 These regions have formed by plastic flow of metal from the zone of internal oxidation 

because of stresses produced by the volume increase associated with the internal oxide particles.  

This phenomenon was apparently first reported by Darken30 for the internal oxidation of Ag-base 

alloys. It was studied in detail by Guruswamy et al31 who observed oxide-free Ag nodules on the 

surface of Ag-In alloys after internal oxidation in air at temperatures in the range 500-700˚C. It 

was proposed that dislocation pipe-diffusion controlled creep was the mode of stress relief and 

Ag transport.  Similar observations have been made for the internal oxidation of Ni-Al32 and Ni-

Al-Si33, 34 alloys.  The amount of metal transported has been observed to be proportional to the 

volume of internal oxides produced.  This is qualitatively the result of the current investigation in 

that there is a much larger oxide-free region for AL453 than Crofer which is consistent with a 

larger internal oxide volume for AL453. Such a region has apparently formed locally above a 

single large internal oxide particle in 26 Cr Ferritic in Figure 21a.  The previous observations of 

this phenomenon have generally been for the case of internal oxidation with no external scale 

formation.  Guan et al35 studied the internal oxidation of Ni-Al-Si alloys under a NiO scale but 

did not report an oxide-free region for an oxidation temperature which had produced an oxide-

free layer of Ni on the surface in the absence of an external scale.  Huczkowski et al23 show 

several examples of metallic protrusions under chromia scales and comment that they can 

accelerate the oxidation rate. 



 

Sigma-Phase Formation 

Figure 21 shows that a second phase formed in the Fe-26 Cr ferritic alloy during exposure at 

700˚C.  Figure 28 shows the XRD pattern for a Fe-26 Cr ferritic specimen exposed for 2000 

hours at 700oC in air + 0.1 atm H2O.  Many of the peaks match with the chromia lines, the ferrite 

lines, or the sigma phase lines.  This analysis proved that the sample did in fact contain the sigma 

phase. 

The approximate compositions of the sigma phase and the ferrite were determined by 

EDS analysis.  The results show significant increases in the amount of chromium (~35 wt%) and 

molybdenum (3-4 wt%) in the sigma phase regions when compared to the initial composition.  

The surrounding ferrite is slightly depleted of those elements.  The silicon content appears to not 

be greatly affected, with only a slight enrichment in the sigma phase. 

Figure 29 shows E-brite that had been exposed in dry air at 700oC in 50 hour increments 

to 500 hours.  Only a small amount of the sigma phase is seen after 200 hours, but with time, 

more is seen in each successive micrograph. The sigma-phase nucleates at intersections of ferrite 

grain boundaries with the free surface and propagates inward. 

The micrographs of Fe-26 Cr ferritic exposed in dry air at 700oC in 50 hour increments up to 500 

hours are shown in Figure 30.  Again, there is only a small amount of sigma phase observed in 

the sample exposed for 200 hours.  As the exposure time is increases, the amount of sigma phase 

also increases. 

 The sigma phase was observed only in E-brite and Fe-26Cr ferritic that had been exposed 

at 700oC in the three atmospheres that were studied.  This can be explained if the Fe-Cr phase 

diagram is examined (see Figure 31).  E-brite and Fe-26Cr ferritic both contain 26% chromium, 



which is more than the other alloys that were investigated.  In Figure 31, point A (700oC, 26% 

chromium) is within the region where sigma forms, but point B (900oC, 26% chromium) is 

outside of this region.  However, sigma phase formation is also strongly influenced by other 

elements in the alloy. 

E-brite contains 1.0% molybdenum and 0.2% silicon.  The Fe-26 Cr ferritic also contains 1.0% 

molybdenum, but has approximately 1.0% silicon.  Additions of molybdenum and silicon will 

increase the rate of sigma phase formation36. However, Fe-26 Cr ferritic contains considerably 

more silicon than E-brite. It has been reported that Si is extremely potent in accelerating sigma-

phase formation37, 38.  This was indeed observed in that the formation of sigma-phase was more 

extensive in Fe-26Cr ferritic than E-brite. Tetsui et al38 have reported that a high purity Fe-30Cr 

alloy did not form sigma phase after 500 hours at 650˚C.  Therefore, alloy purity may be an 

important avenue of study for production of high-Cr interconnects which are resistant to sigma-

phase formation. 

 The development of the sigma phase was observed to be strongly influenced by the 

environment in which the specimens were exposed.  Figure 32 shows a cross-section of Fe-26Cr 

ferritic which was exposed in dry air for 2000 cycles.  The sigma phase, which nucleated at the 

surface, has penetrated a distance of approximately 50 μm into the alloy.  Figure 33 show a 

cross-section of the same alloy which was exposed in simulated anode gas for 2000 cycles. 

Sigma phase was observed to form all the way to the center of the 1 mm thick specimen.  

Similarly, Figure 34 shows the cross-section of a specimen exposed for 2000 cycles in air plus 

10% water vapor.  The sigma phase has formed all the way to the center of the specimen and the 

volume fraction of sigma phase appears to be even larger than that in Figure 33.  Figures 33 and 

34 suggest that the presence of water vapor is influencing the nucleation and/or growth of the 



sigma phase.  This somewhat remarkable result of a metallic phase transformation being 

influenced by an external atmosphere is the subject of continuing experiments. 

 

 

SUMMARY AND CONCLUSIONS 

 The cyclic oxidation of a variety of ferritic stainless steels has been studied in the 

temperature range 700-900˚C in atmospheres relevant to solid oxide fuel cell operation. The 

most detrimental environment at 800˚C and 900˚C was found to be air with 10% water vapor.  

This resulted in excessive oxide spallation from Fe-26Cr ferritic and E-brite and rapid scale 

growth on Crofer22 APU and AL 453.  The oxidation behavior of the alloys varied considerably 

based on the Cr concentration and the presence of other minor elements, whether added 

intentionally (e.g. reactive elements) or remaining as impurities (e.g.Si, Al). 

Oxide growth was slow at 700˚C but the higher Cr-content alloys were observed to form 

sigma-phase at this temperature.  The sigma phase formation was accelerated by higher silicon 

contents and, remarkably, by the presence of water vapor in the exposure environment. 

Alloys containing Mn were observed to form an outer layer of MnCr2O4 over the chromia 

scale.  The potential for this overlayer to suppress reactive evaporation of the chromia scales has 

been analyzed. 
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Table 1 Approximate Electrical Resistivities of Oxides in Air at 800˚C. 

Oxide Resistivity (Ω*cm2)

SiO2 106

Al2O3 108

Cr2O3 102

 



Table 2: Comparison of oxide thicknesses and weight gains per area for three 

ferritic alloys exposed at 900oC in Ar/H2/H2O, air, and air + 10% H2O 

Alloy Atmosphere Time (hr) Average Oxide 
Thickness (μm)

Calculated Δm/A 
(mg/cm2)

Measured Δm/A 
(mg/cm2)

Crofer Dry Air 2000 8 1.3201 2.1916

Crofer Air + 0.1 atm H2O 2000 13.5 2.2276 1.9964

Crofer Ar/H2/H2O 2005 20 3.3001 11.2230

AL 453 Dry Air 2000 8.75 1.4444 2.5033

AL 453 Air + 0.1 atm H2O 2000 7.5 1.2375 1.0790

AL 453 Ar/H2/H2O 2005 11.5 1.8976 0.7079

Fe-26Cr Dry Air 2000 4.5 0.7425 3.4825

Fe-26Cr Air + 0.1 atm H2O 2000 6 0.9900 3.0840

Fe-26Cr Ar/H2/H2O 2005 8.5 1.4025 6.1166  



 
 

Figure 1. Vapor species diagram for the Cr-O system at 1250 K from Ref. 7. 



 

 
Figure 2 Schematic diagram of the apparatus used for cyclic oxidation exposures with 
controlled partial pressures of water vapor. 



 
 

 

Figure 3.  Weight Change Vs Time Plots for duplicate specimens for ferritic alloys exposed in 
dry air (simulated cathode gas) at 900oC using one – hour cycles. 



 

 

Figure 4.  Weight Change Vs Time plots for duplicate specimens of ferritic alloys exposed in 

Ar/H2/H2O (simulated anode gas) at 900oC using one – hour cycles. 



 

 

 
Figure 5.  Weight Change Vs Time plots for duplicate specimens of ferritic alloys exposed in air 
+ 10% H2O (simulated moistened cathode gas) at 900oC using one – hour cycles. 



 

 
 

 
 

 
 
Figure 6.  Cross – section micrographs of Fe-26%Cr ferritic after exposure in dry air (a.), air + 
10% H2O (b.), and Ar/H2/H2O (c.) atmospheres at 900oC. 



 
 

 
 

 
 

 
 
Figure 7.  Cross – section micrographs of Fe-26%Cr ferritic after exposure in dry air (a.), air + 
10% H2O (b.), and Ar/H2/H2O (c.) atmospheres at 900oC showing details of the alloy/scale 
interface. 
 
 



 
 

Figure 8. Macroscopic photograph showing freshly spalled and re-grown areas on the 
surface of Fe-26Cr ferritic (847 cycles, 1/10atm H2O) 



 
 
 

 
 

 
 

 
 
Figure 9.  Cross – section micrographs of Crofer after exposure in dry air (a.), air + 10% H2O 
(b.), and Ar/H2/H2O (c.) atmospheres at 900oC 



 
 

 
 

 
 

 
 
Figure 10.  Cross–section micrographs of Crofer after exposure in dry air (a.), air + 10% H2O 
(b.), and Ar/H2/H2O (c.) atmospheres at 900oC, showing more detail of the scales. 



 
 

Figure 11. Macroscopic photograph of a Crofer specimen exposed in air +10% H2O showing 
extensive warpage. 
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Figure 12  Cross-section micrographs of AL453 after exposure in dry air (a.), air + 10% H2O 
(b.), and Ar/H2/H2O (c.) atmospheres at 900°C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 

Figure 13.  Cross-section micrographs of AL453 after exposure in dry air (a.), air + 10% H2O 
(b.), and Ar/H2/H2O (c.) atmospheres at 900°C, showing more detail of the scales. 
 
 
 
 
 
 



 

 

Figure 14.  Weight Change Vs Time plots for duplicate specimens of ferritic alloys exposed in 
air + 10% H2O (simulated moist cathode gas) at 800oC using one – hour cycles. 



 

 

 
Figure 15. Cross-section micrograph of Crofer after exposure in air + 0.1 atm H2O for 2000 
hours at 800˚C. 



 

 

Figure 16. Cross-section micrograph of “New Crofer” after exposure in air + 0.1 atm H2O 
for 2000 hours at 800˚C. 



 

 

 
Figure 17. Cross-section micrograph of JS-3 after exposure in air + 0.1 atm H2O for 2000 
hours at 800˚C. 



 
 

 
Figure 18.  Weight Change Vs. Time plots for duplicate specimens of ferritic alloys exposed in 
dry air (simulated cathode gas) at 700oC using one – hour cycles. 



 

 
 
 

Figure 19.  Weight Change Vs Time plots for duplicate specimens of three ferritic alloys exposed 
in Ar/H2/H2O (simulated anode gas) at 700oC using one – hour cycles. 



 

 
 
 

Figure 20.  Weight Change Vs Time plots for duplicate specimens of ferritic alloys exposed in 
air + 10% H2O (simulated moist cathode gas) at 700oC using one hour cycles 



 

 
 

 
 

 
Figure 21.  Cross – section micrographs of Fe – 26% Cr ferritic alloy after exposure in 
atmospheres of dry air (a.), Ar/H2/H2O (b.), and air + 10% H2O (c.) for 2000 one hour cycles at 
700oC. 



 

 
 
 
 

 
 

 
 

 
 

Figure 22. Cross – section micrographs of Crofer 22APU after exposure in atmospheres of 
dry air (a.), Ar/H2/H2O (b.), and air + 10% H2O (c.) for 2000 one hour cycles at 700oC. 



 

 
 

 
 

 
 

Figure 23. Cross – section micrographs of AL 453 after exposure in atmospheres of dry air 
(a.), Ar/H2/H2O (b.), and air + 10% H2O (c.) for 2000 one hour cycles at 700oC. 

 



 
Figure 24 Plot showing the effect of water vapor on the volatility of Cr2O3 at 950oC after 
Ref. [10]. 



 
 
 

 
Figure 25 Standard free energy as a function of temperature changes for the reaction of 
transition metal oxides with chromia to form spinel. 



 
 
 

 
 
Figure 26 Standard free energy changes for the reactions of NiO and MnO with chromia to 
form the respective chromates. (The two lines for MnCr2O4 were obtained by using two different 
techniques for estimating ΔS˚.) 



 
 

 
Figure 27 Partial pressures of CrO3 in equilibrium with Cr2O3, La2O3-saturated LaCrO3, and 
MnO-saturated MnCr2O4 as a function of temperature. 



 
 

 
Figure 28. X-ray diffraction pattern for 26 Cr Ferritic alloy exposed at 700˚C in air + 0.1 atm 
H2O for 2000 hours.   



     
 

      
 

      
 

 
Figure 29. Cross-sections of E-brite exposed at 700˚C in dry air in 50 hour increments after 
a) 200 hours, b) 250 hours, c) 300 hours, d) 350 hours, e) 400 hours, f) 450 hours, and g) 500 
hours.  
 
 
 



 
 

     
 

     
 

     
 

 
Figure 30. Cross-sections of 26 Cr Ferritic exposed at 700˚C in dry air in 50 hour increments 
after a) 200 hours, b) 250 hours, c) 300 hours, d) 350 hours, e) 400 hours, f) 450 hours, and g) 
500 hours. 



 

 

 
Figure 31. The Fe-Cr phase diagram showing regions in which σ-phase can form. 



 
 
 

Figure 32. Cross-section of 26 Cr Ferritic exposed at 700˚C in dry air for 2000 hours 
showing σ-phase only formed near the surface. 



 
 

 
Figure 33. Cross-section of 26 Cr Ferritic exposed at 700˚C in Ar/H2/H2O for 2000 hours 
showing σ-phase formed throughout the cross-section. 



 
 

Figure 34. Cross-section of 26 Cr Ferritic exposed at 700˚C in air + 0.1 atm H2O for 2000 
hours showing σ-phase formed throughout the cross-section.  
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Abstract 

In this paper, fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) 

interconnect alloys are investigated. A key failure mechanism for interconnects is the spallation of the 

chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing 

methods to measure the critical energy release rate (Gc) associated with the spallation of chromia 

scale/alloy systems are described, as are methods for analyzing the tests. Experimental results are then 

presented for the indentation of ferritic interconnect alloys with grown chromia scales. Results from 

specimens subjected to simulated SOFC environments are used to understand the mechanisms leading to 

scale spallation and the effects of different environments on scale/alloy durability. Results from short-

term exposure indentation tests are related to results from longer-term exposure TGA experiments. This 

work forms the basis for understanding the interplay between chromia spallation and two other 

interconnect failure mechanisms. 

Introduction 

In order to perform its function, the optimal interconnect material for planar solid oxide fuel cells 

(SOFCs) should be impermeable to the anode and cathode gases, have high thermal conductivity, high 

electrical conductivity and good formability. Ferritic stainless steels, which have the above mentioned 

properties, have been identified as candidate materials for low temperature SOFC interconnects. Past 

studies have also shown that ferritic stainless steels have a better thermal expansion match with typical 

ceramic components of solid oxide fuel cells (SOFCs) than competing nickel-based alloys [1-3].  

One of the major concerns associated with the successful operation of low temperature planar SOFCs is 

interconnect durability. The key factors affecting the life of interconnects are:  (i) thickening of the 

chromia scale, which grows on the surfaces of the interconnect as it is exposed to the cathode and anode 

gases, leading to unacceptable electrical resistance levels; (ii) spallation of the chromia scale, leading to 

unacceptable increases in electrical resistance through the detached scale and alloy; and (iii) evaporation 

of the chromia scale where evaporated chromium can affect cathode function.  

The problem of chromia evaporation associated with chromia forming alloys such as ferritic stainless 

steels, has been recognized and studied for many years [4]. Recent studies [1-3, 5] of chromia 

evaporation from SOFC interconnects have shown that the addition of elements like titanium and 

manganese to the ferritic interconnects can reduce evaporation. Coatings of La0.9Sr0.1CrO3 have also 

been applied to ferritic alloys to limit CrO3 evaporation [6]. Thickening of the chromia scale, leading to 
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increased resistance, has also been studied [1, 2] and it has been found that this problem can be 

controlled by the addition of elements like lanthanum, which tend to slow down the growth rate of 

chromia and also improve its adherence to the alloy substrate. Albeit the spallation problem has been 

considered from a metallurgical point of view, the mechanics of the adherence of chromia scales to 

interconnect alloys has not received widespread attention.   

An accelerated testing protocol is presented in this paper to address the spallation issue. It involves 

performing indentation tests on specimens that are exposed to either simulated cathode gas (Air + 0.1 

atm H2O) or simulated anode gas (Ar/H2/H2O) environments for short time periods and using the results 

to predict long-term behavior. For the purposes of this paper, test results for a 26 Cr ferritic stainless 

steel exposed to the above mentioned environments at 900ºC are discussed.  

Indentation Technique for Determining Chromia Scale Adhesion 

Description of the Test

The indent test employed in this study was first proposed by Drory and Hutchinson [7] as a means for 

measuring interfacial toughness in brittle coating systems. It was then adapted for use on thermal barrier 

coating systems by Ma [8]. In this test, the specimen, which is typically a 16x5x1mm ferritic stainless 

steel wafer with an adherent chromia scale formed during cyclic exposure to either simulated cathode 

gas or anode gas, is placed in a Rockwell hardness tester. The specimen is indented in the tester using a 

brale C indenter.

A schematic diagram of the indentation process is shown in Figure 1. The chromia scale is penetrated by 

the indenter and the plastic deformation of the underlying substrate induces compressive radial strains in 

the substrate, away from the indent crater. This strain is transferred to the scale (the in-plane strains in 

the scale and substrate are matched at the interface) and the associated scale stress acts to drive the radial 

extension of an interface crack thereby inducing oxide scale debonding. 

                                                  Figure 1 Schematic of the Indentation Test 

Mechanics of Chromia Scale Spallation

The decoherence of a chromia scale from an interconnect alloy can be modeled as a fracture mechanics 

problem. Fracture mechanics principles require that a debond crack will grow along the oxide/alloy 

interface when G=Gc. The quantity G is the energy release rate, defined as the stored elastic energy in 

the scale that is released during debonding per unit newly created crack face area. G is the quantity 

driving debonding. Gc is the critical energy release rate, which can be treated as a property of the 

interface. Gc is the quantity resisting debonding. For the case of a residually stressed thin oxide scale on 

a thick substrate, the formula G=Gc becomes: 
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)1(t =−νσ
  ,                                                             (1) 

where  is the equal biaxial residual stress in the scale, t is the scale thickness, E is the scale elastic 

modulus and  is the scale Poisson’s ratio. In using this formula, it is assumed that the scale has 

completely spalled off, relaxing in-plane stresses and strains in both directions.  

The chromia thickness is determined by the rates of diffusion of chromium and/or oxygen through the 

scale. The residual stress level in the scale is determined by stresses which arise during oxide formation 

(growth stresses), stresses produced during cool-down from elevated temperatures due to thermal 

expansion mismatch between the oxide and the alloy (thermal stresses), and any stress relaxation which 

may occur. In addition to equal biaxial residual stresses, stresses in the scale can also include uniaxial 

applied stresses from mechanical loading of the scale. The idea of the fracture testing described above is 

to increase the stress in the scale via mechanical loading, increasing the elastic energy stored in the scale 

and inducing spallation much earlier than it would normally occur.  

Debond Behavior

The indentation test described above was performed on two sets of 26 Cr ferritic specimens with test 

loads of 60, 100 and 150 kg. Figures 2 and 3 show scanning electron microscope (SEM) images (viewed 

from above) of two indented specimens exposed to simulated cathode gas (SCG) and simulated anode 

gas (SAG), respectively. As indicated in Figs. 2 and 3, a change in the exposure environment greatly 

changes the debond behavior. The specimens exposed in simulated cathode gas (SCG) show a non-

uniform flaking of the chromia scale in the near-indent region, with the density of the flaking decreasing 

with increasing distance from the center of the indentation (and decreasing energy release rate). This 

behavior suggests the presence of a non-uniform interfacial toughness and a scale that is easily broken 

up. In contrast, specimens exposed to simulated anode gas (SAG) show a more uniform peeling of an 

intact chromia scale. This debonding behavior is indicative of a more coherent scale and perhaps more 

uniform adhesion.

Figure 2 SEM Image of an Indented 26 Cr Ferritic      Figure 3 SEM Image of an Indented 26 Cr Ferritic 

Alloy Exposed to SCG at 900ºC for 100 hrs                Alloy Exposed to SAG at 900ºC for 264 hrs 

These qualitative behaviors are consistent with long-term weight gain measurements on the same 26 Cr 

ferritic alloy (see Figure 4). For the SCG case, the specific weight measurements are nearly constant 

after 50 hrs of exposure. This is consistent with the idea that chromia evaporation may be limiting scale 

growth and/or that flaking of thicker or more weakly bonded portions of the scale is occurring. In 

contrast, for the SAG case, weight gains continue out to 2000 hrs of exposure. This is consistent with 

 Debonded Flakes Debonded

Region 

500 µm 500 µm

167



there being less chromia evaporation and no flaking away of pieces of the chromia scale. Findings 

detailed in the section on experimental results also show essentially unchanging debond behavior for 

specimens exposed to SCG for 100 and 200 hrs (consistent with the steady-state specific weight data) 

and changing debond behavior for specimens exposed in SAG for 264 and 364 hrs (consistent with the 

weight gains seen in Figure 4 for this case).  
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  Figure 4 Specific Weight Gain Plots for the 26 Cr         Figure 5 Typical Axisymmetric Finite Element  

  Ferritic Alloy Exposed to SAG and SCG at 900ºC         Mesh Used in the Indentation Simulations 

Analysis of the Test 

Finite Element Model Description

The indentation test was simulated using the commercial finite element software ABAQUS. A 2-D 

axisymmetric model of an elastic-plastic substrate and a rigid indenter was used as shown in Figure 5. 

Two different sized substrates were studied, a large substrate model - large enough to experience strains 

and displacements identical to an infinitely large substrate and a typical SOFC test specimen model 

having a substrate radius of 8mm and a depth of 1mm. Surface strain results used in energy release rate 

calculations from these two types of models agreed, indicating that for indent loads up to 150kg, a 1mm 

thick SOFC specimen behaves like a large substrate. The rigid indenter was modeled to have an 

included angle and a tip radius identical to that of the actual conical indenter. The elastic-plastic 

behavior of the substrate was obtained from the stress-strain curve for the commercial alloy E-BRITE, a 

similar 26 Cr ferritic alloy with lower levels of Si. 

The substrates were meshed with four-noded bilinear axisymmetric elements with a total of 12757 

elements and 13058 nodes. The grid beneath the indenter was highly refined with element sizes ranging 

from 3-6 µm. In addition, elements were chosen to possess the characteristics of reduced integration and 

hybrid formulations, which help reduce run time and provide more accurate results in the near indent 

region, which is subjected to extensive plasticity and exhibits nearly incompressible behavior. The 

model is of the interconnect substrate, excluding the chromia scale on top. In the actual specimens, the 

chromia scale thickness is small compared to the size of the indentation strain field. As a result, the scale 

does not constrain the deformation of the substrate and a model excluding the scale is appropriate. In-

plane substrate surface strains are transferred directly to the scale. Thus, in-plane surface strains from 

Large Substrate 

   Large  
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   Conical Indenter r

z
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the model are used within thin coating fracture mechanics formulas described in the next section to 

calculate energy release rate values.  

Fracture Mechanics Calculations

The energy release rate, G, is calculated from the strains obtained from the top surface of the numerical 

indentation model. The equations used for G calculations were originally formulated for a single-layered 

coating system by Drory and Hutchinson [7]. The total radial strain, r, and circumferential strain, , in 

a single layered coating system can be calculated by combining a biaxial residual strain, 0,

corresponding to the residual stress, with the strains obtained from the numerical indentation model, 
n
.

The strains are given as 

o

n

rr εεε += ; o

n εεε θθ +=   ,                                                  (2) 

where                                                       
dr

dUn

r =ε  ;
r

Un =θε   .                                                        (3) 

In eq (3), U is the radial displacement on the top surface of the substrate. Also the biaxial residual strain 

is given as 

oxide

oxideoxide

o
E

)1( νσε −
=   .                                                             (4)

The formula for calculating the critical energy release rate is given as: 
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=   ,                                          (5)

where it is assumed that only the radial stress and strain are released as the crack front extends in the 

radial direction.  

In the above equations, Eoxide, toxide and oxide are the Young’s modulus, thickness and Poisson’s ratio of 

the chromia scale and oxide is the equal biaxial residual stress in the scale. Since the energy release rate, 

G, equals the critical energy release rate, Gc, resisting crack extension, the calculated G values in eq (5) 

yield Gc values in the tests. Because mechanical properties of chromia scales are not as readily available, 

as a first approximation the properties of an alumina scale have been used in the calculations. The 

thickness data were measured from cross section SEM images and residual stresses were obtained from 

x-ray diffraction (XRD) measurements performed at the University of Pittsburgh. 

Indentation Test Analysis Results 

The critical energy release rate, G = Gc, calculated from the simulation results is plotted against the 

radial distance, R, from the indenter normalized by the contact radius of the indenter, a (see Figure 1). 

Figure 6 shows such a plot for a large substrate model subjected to an indent load of 60 kg under 

frictionless conditions. The different curves represent different oxide thicknesses, with the lowermost 

curve corresponding to an oxide thickness of 0.25µm and the uppermost curve corresponding to a 

thickness of 4µm.
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         Figure 6 Simulation Results for a Large Substrate at  

         a Load of 60 kg under Frictionless Conditions    

The plot shows Gc values which are large in the region close to the indent and trail off to constant values 

in the region far away from the indenter. The constant values of Gc away from the indenter correspond 

to the G due to residual strains only. Thus, for a given oxide thickness, spontaneous spallation occurs 

when the critical energy release rate reaches the minimum of the curve which corresponds to the energy 

release rate due to residual strains in the scale. 

Indentation Test Experimental Results 

SAG Exposed Specimens

As described in the earlier section, mechanical loading via indentation of the test specimen exposed to 

an SAG environment resulted in peeling of an intact chromia scale. The critical energy release rate 

associated with this type of debonding can be quantified by measuring the radial extent of the debond. 

Figure 7 shows an SEM image of the 26Cr ferritic alloy exposed to SAG for 264 hrs. The white region 

represents the debonded area and the dashed circle gives a rough estimate of the radius of the debond, R.  

Figure 7 SEM Image of an Indented Specimen                Figure 8 SEM Image of an Indented Specimen 

Exposed to SAG for 264 hrs                                             Exposed to SAG for 364 hrs 
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In analyzing the debonded area, the important parameter is the ratio of the extent of debonding to the 

indent radius, R/a, which in the case of Figure 7 is approximately 2. Figure 8 shows an image from 

indentation of the same specimen, but after an exposure time of 364 hrs, with an approximate value of 

R/a = 2.5 (based on the maximum extent of debonding). From a fracture mechanics view point (as 

suggested by eq (1)) this increase in the extent of debonding could be due to an increase in the residual 

stress or loss of adhesion or scale thickening. The increasing weight gain exhibited by SAG-exposed 

specimens (Figure 4) suggests a growth in the oxide scale and thus part of the cause for extended 

debonding in the case of 364 hrs exposure compared to 264 hrs exposure is a thicker oxide scale. 

A key concern associated with this type of visual quantification of the debond extent is that the oxide 

scale could be barely attached to the substrate but still appear bonded. To investigate this issue, a test 

specimen exposed to 464 hrs was indented using a 60 kg load and then tinted by exposing it at 700ºC for 

10 minutes, followed by indentation at a higher load of 150 kg. Even though indentation at a higher load 

results in more extensive debonding compared to that at a lower load, the non-dimensional ratio of R/a 

remains unchanged. As can be seen from Figure 9, the process of tinting enables verification of the 

actual extent of debonding caused by the 60 kg load. The inner light gray region represents the debonded 

area from the indent load of 60 kg and the outer darker gray area is the debonded area from the indent 

load of 150 kg. The inner light gray area from the 60 kg indent has the same size and shape as what was 

observed immediately after the 60 kg indent was made. Because of this, it appears that observed debond 

sizes correlate well with the actual extent of scale debonding from the substrate.  

    Figure 9 SEM Image Showing Debonding of   

    a Tinted Specimen, with an Inner, Lighter Gray  

    Region from a 60 kg Load and an Outer, Darker  

    Region from a 150 kg Load 

The combined experimental and simulation results for Gc can be used to obtain a rough estimate of the 

exposure time at which spontaneous spallation will occur. In the case of a test specimen exposed for 364 

hrs the maximum R/a was approximately 2.5, with an oxide scale thickness of approximately 2 µm (as 

obtained from cross section SEM thickness measurements). The corresponding critical energy release 

rate due to stresses induced by indentation and residual stress is found to be 34 J/m
2
 as shown by the 

horizontal dashed line in Figure 6. Therefore, if for a given oxide scale thickness the energy release rate 

due to residual stress reaches a value of 34 J/m
2
, spontaneous spallation would occur. From Figure 6 it 

can be seen that if the oxide thickness reaches a value of 4µm the energy release rate due to residual 

stresses only will reach this critical value. Cross section SEM measurements indicate that a 4 µm oxide 

thickness corresponds to an exposure time of 800 hrs, which suggests that the time to spontaneous 

spallation is approximately 800 hrs.  
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To test this prediction, indentation tests were performed on a specimen exposed for 822 hrs. As seen in 

Figure 10, out of the 3 indents, in 2 cases the debonding propagated across the specimen. Cross section 

images (Figure 11) revealed that the oxide scale was barely attached to the substrate, in which case any 

slight disturbance could cause the oxide scale to spall off. In fact, the detachment of the scale seen in 

Figure 11 is likely due to disturbance of the scale by the sectioning operation. Thus, indentation testing 

conducted at shorter exposure times has provided a good indication as to when to expect residual stress-

induced spontaneous spallation.  

Figure 10 SEM Image of Indentation at Three                    Figure 11 Cross Section SEM Image of SAG       

Different Loads for an SAG Specimen Exposed                 Specimen Exposed for 822 hrs at 900ºC 

for 822 hrs at 900ºC 

SCG Exposed Specimens

The non-uniform flaking of the oxide scale caused by the indentation of SCG-exposed specimens 

complicates the test analysis, as characterizing the adhesion by a single Gc value is no longer 

appropriate. Therefore, a methodology different from the one described for SAG-exposed specimens 

must be employed. An image analysis was formulated for this purpose, in which the debonded area 

outside the indent image was decomposed into three to seven concentric rings, with each ring having an 

average radius R as shown in Figure 12. A macro written in the image analysis software package SCION 

was used to obtain a percentage of debonded oxide scale in each ring. The percentage of debonded 

chromia scale was plotted for each ring against a normalized distance R/a, where a is the indent radius 

and R the average radius of the ring (see Figure 13).  

The percentage debond plot suggests that the when R/a is small (close to the indent) the percentage of 

debonding is large and trails off with an increase in R/a. Also, the curves for 100 hrs and 200 hrs 

exposures (as indicated by 100 h and 200 h in the legend) are not very different, suggesting the 

attainment of a steady state with regard to susceptibility to debonding. The weight gain measurement 

plot Figure 4, shows that after approximately 50 hrs the weight gain curve for the SCG-exposed 26 Cr 

ferritic alloy reaches a more or less constant value. Two mechanisms can cause fracture behavior and 

specific weight measurements to reach a steady state. First, as the average scale thickness increases with 

exposure time, thicker or poorly bonded portions of the scale may spall, causing the average scale 

thickness to reach a steady state. Second, there is evidence to suggest that chromia evaporation, which 

can also reduce or eliminate scale thickening, can be significant in SCG environments. Fracture tests can 

yield insight into the role of the spallation mechanism in reaching a steady state.  

Barely Attached 

Chromia Scale 20 µm 1.5 mm 

100Kg 

150Kg 
   60Kg 

Debonds

172



                                                                                  

                                                   

                                   Figure 12 100 hr SCG Indent Image Decomposed into 3 Rings 

Indentation tests on specimens subjected to a very short exposure time of 10 hrs have revealed initial 

debonding from compressive stress-induced shear cracks, as seen in Figure 14. Figure 13 shows 

percentage debond curves for the 10 hour exposure and the amount of debonding is significantly less 

compared to that at 100 and 200 hrs. It is planned to indent specimens exposed to up to 100 hrs to track 

the transition to steady state conditions.  

0

10

20

30

40

50

60

70

80

0 1 2 3 4
R/a

%
 D

e
b

o
n

d

100 h 60 kg

100 h 150 kg

200 h 60 kg

200 h 150 kg

10 h 150 kg

10 h 60 kg

Figure 13 Percent Debond Plot for 10, 100 and 200 hour 

                                       SCG-Exposed Specimens Indented at 60 kg and 150 kg 

Sensitivity of the image analysis could potentially influence the percentage debond results. In order to 

ensure that the image analysis would yield sensible results, the SEM image was studied qualitatively 

using EDS which confirmed that the white region in the image was indeed the debonded area (substrate) 

and the darker area was the bonded oxide scale. Since the pixel intensity was used to determine if a 

given pixel was bonded or debonded, as one gets close to the demarcation value, it gets harder to 

segregate them appropriately. For this purpose a sensitivity analysis was performed, in which a few 

pixel intensities close to the demarcation value were considered bonded in one case and debonded in the 

other. It was found that in both cases the percentage of debonding data was almost unaffected. The 

reason behind this is that the number of pixels with intensity values close to the demarcation value were 

on the order of 10-15, while the total number of pixels was in the order of thousands.  

Ring 1 Ring 2 Ring 3 
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                                          Figure 14 SEM Image of 10 hour SCG-Exposed Specimen 

                                          Showing Initial Debonding from Shear Cracks 

Summary and Conclusions 

The spallation of the chromia scale on interconnect alloys for planar solid oxide fuel cells has been 

modeled and analyzed as an interfacial fracture mechanics problem. An accelerated testing protocol 

employing indentation techniques has been established. Indentation tests performed on 26 Cr ferritic 

alloy test specimens exposed to short times in SAG and SCG environments at 900ºC have indicated very 

different debond mechanics. The SAG-exposed specimens exhibited a peeling type debond of an intact 

chromia scale, while the SCG-exposed specimens exhibited a non-uniform flaking of the oxide scale. As 

a result, different techniques were employed to analyze specimens subjected to the two types of 

exposure environments.  

The peeling type debond in SAG-exposed specimens was characterized by the extent of debonding and 

an estimate of the critical energy release rate associated with the debond was obtained from the 

numerical simulation results. It was found that for these specimens, although the weight gain 

measurements showed an increasing trend suggesting that the oxide scale was growing, accelerated 

testing revealed that mechanical failure was possible much earlier than the weight gain measurements 

suggested. Also, the mechanical testing gave an estimate of the thickness at which spontaneous 

spallation could occur. Cross-section SEM images were consistent with the indentation analysis in 

saying that mechanical failure is possible at an earlier time of just over 800 hrs, which was not obvious 

from the weight gain measurement data available up to 2000 hrs. Finally, the quantification of debond 

size based on a visual estimate of the extent of debonding from the SEM images was validated by 

employing a tinting technique. 

In the case of SCG-exposed specimens, the non-uniform flaking of the oxide scale required a different 

analysis technique. An image analysis was performed to quantify the percentage of debonded area as a 

function of non-dimensional distance outside the indent. Results for 100 and 200 hrs exposures 

suggested that the radial distribution of debonding had reached a steady state, consistent with specific 

weight gain measurements. Experiments are underway to track the transition to this steady-state 

condition.

Chromia scale spallation is one of three potential failure mechanisms for fuel cell interconnects, the 

others being increased resistance from chromia scale growth and chromia evaporation. Changing the 

alloy system or exposure environment can cause a different mechanism to dominate, such that it is the 
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first to reach a critical value as exposure time is increased. The mechanisms are also coupled, where 

increased chromia scale growth also increases the likelihood of scale spallation, but increased chromia 

evaporation reduces the scale thickness and the likelihood of spallation. Overall, results from 

experiments to date suggest that scale spallation can be the dominant failure mechanism. 
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