25 research outputs found

    CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2capture: Techno-economic analysis

    Get PDF
    Among the carbon capture and storage (CCS) technologies suitable for power generation plants, partial oxy-combustion coupled with post combustion CO2capture is gaining interest, since such a hybrid configuration could allow to reduce the size and enhance the performance of post-combustion CO2capture by operating combustion with air enriched with oxygen and reducing the dilution of flue gas. Moreover, partial oxy-combustion is a potential candidate for the retrofit of existing steam plants because it could be based on an almost conventional boiler and requires a smaller CO2capture section. This work presents the results of a comparative techno-economic analysis of a 1000 MWthpartial oxy-combustion plant based on an ultra-supercritical pulverized coal combustion power plant integrated with a post-combustion CO2capture system and geological storage in saline aquifer. In particular, plant performance is assessed by using simulation models implemented through Aspen Plus 7.3 and Gate Cycle 5.40 commercial tools, whereas economic performance are evaluated on the basis of the expected annual cash flow. The analysis shows that, for new plants, this hybrid approach is not feasible from the economic point of view and full oxy-combustion potentially remains the most profitable technology even if, in the short-term period, the lack of commercial experience will continue to involve a high financial risk

    Towards net-zero: CO 2 capture and biogas purification through electric potential swing desorption to achieve SDGs 7 and 13

    Get PDF
    Currently, the potential of biomethane derived from biogas is substantial, positioning it to fulfill a considerable share of the United Kingdom’s total energy needs. The primary challenge associated with raw biogas lies in purifying it to produce biomethane, a process that necessitates the removal of carbon dioxide and hydrogen sulfide. Among the various methods, adsorption of activated carbon (AC) stands out as a particularly effective and cost-efficient approach for converting biogas into biomethane, provided that the regeneration of AC proves economically viable. In this research, a segment of activated carbon was utilized to assess the adsorption properties when exposed to a gas mixture of CO2, H2S, and N2 within a regenerative activated carbon setup. This investigation encompassed the analysis of adsorption and desorption behaviors, process capacities, and the impact of regeneration. To enhance the adsorption of CO2, electro-conductive polymers (ECPs) were incorporated into the AC samples, leading to an extension in breakthrough time. Subsequent to adsorption, the electric potential swing desorption (EPSD) was employed for in situ regeneration of activated carbon samples, involving potentials of up to 30 V. The findings exhibited that the newly introduced EPSD technique considerably diminished desorption durations for both H2S and CO2. Moreover, it successfully rejuvenated the accessible adsorption sites, resulting in reduced desorption times compared to the initial breakthrough time during adsorption. Consequently, the EPSD system proves to be a promising candidate for in situ regeneration of activated carbon to eliminate CO2 and H2S from biogas. Notably, this approach offers inherent advantages over conventional methods including thermal swing adsorption (TSA) and pressure swing adsorption (PSA) in terms of regeneration. The demonstrated method underscores the potential for more efficient and economically viable cycles of adsorption and desorption, thereby enhancing the overall biogas-to-biomethane conversion process to achieve SDGs 7 and 13 for clean and green energy applications

    Thermodynamic performance analysis of hydrofluoroolefins (HFO) refrigerants in commercial air-conditioning systems for sustainable environment

    Get PDF
    Global warming is one of most severe environmental concerns that our planet is facing today. One of its causes is the previous generation of refrigerants that, upon release, remain in the atmosphere for longer periods and contribute towards global warming. This issue could potentially be solved by replacing the previous generation's high global warming potential (GWP) refrigerants with environmentally friendly refrigerants. This scenario requires an analysis of new refrigerants for a comparison of the thermodynamic properties of the previously used refrigerants. In the present research, a numerical study was conducted to analyze the thermodynamic performance of specifically low GWP hydrofluoroolefens (HFO) refrigerants for an actual vapor compression refrigeration cycle (VCRC) with a constant degree of 3 K superheat. The output parameters included the refrigeration effect, compressor work input, the coefficient of performance (COP), and the volumetric refrigeration capacity (VRC), all of which were calculated by varying the condenser pressure from 6 to 12 bars and vapor pressure from 0.7 to 1.9 bars. Results showed that R1234ze(Z) clearly possessed the desired thermodynamic performance. The drop in refrigeration effect for R1234ze(Z) was merely 14.6% less than that of R134a at a 12 bar condenser pressure; this was minimum drop among candidate refrigerants. The drop in the COP was the minimum for R1234ze(Z)-5.1% less than that of R134a at a 9 bar condenser pressure and 4.7% less than that of R134a at a 1.9 bar evaporator pressure, whereas the COP values of the other refrigerants dropped more drastically at higher condenser pressures. R1234ze(Z) possessed favorable thermodynamic characteristics, with a GWP of 7, and it can serve as an alternative refrigerant for refrigeration systems for a sustainable environment

    Towards net-zero: CO2 capture and biogas purification through electric potential swing desorption to achieve SDGs 7 and 13

    Get PDF
    Currently, the potential of biomethane derived from biogas is substantial, positioning it to fulfill a considerable share of the United Kingdom’s total energy needs. The primary challenge associated with raw biogas lies in purifying it to produce biomethane, a process that necessitates the removal of carbon dioxide and hydrogen sulfide. Among the various methods, adsorption of activated carbon (AC) stands out as a particularly effective and cost-efficient approach for converting biogas into biomethane, provided that the regeneration of AC proves economically viable. In this research, a segment of activated carbon was utilized to assess the adsorption properties when exposed to a gas mixture of CO2, H2S, and N2 within a regenerative activated carbon setup. This investigation encompassed the analysis of adsorption and desorption behaviors, process capacities, and the impact of regeneration. To enhance the adsorption of CO2, electro-conductive polymers (ECPs) were incorporated into the AC samples, leading to an extension in breakthrough time. Subsequent to adsorption, the electric potential swing desorption (EPSD) was employed for in situ regeneration of activated carbon samples, involving potentials of up to 30 V. The findings exhibited that the newly introduced EPSD technique considerably diminished desorption durations for both H2S and CO2. Moreover, it successfully rejuvenated the accessible adsorption sites, resulting in reduced desorption times compared to the initial breakthrough time during adsorption. Consequently, the EPSD system proves to be a promising candidate for in situ regeneration of activated carbon to eliminate CO2 and H2S from biogas. Notably, this approach offers inherent advantages over conventional methods including thermal swing adsorption (TSA) and pressure swing adsorption (PSA) in terms of regeneration. The demonstrated method underscores the potential for more efficient and economically viable cycles of adsorption and desorption, thereby enhancing the overall biogas-to-biomethane conversion process to achieve SDGs 7 and 13 for clean and green energy applications

    Controlled Ovarian Stimulation with recombinant-FSH plus recombinant-LH vs. human Menopausal Gonadotropin based on the number of retrieved oocytes: Results from a routine clinical practice in a real-life population

    Get PDF
    BACKGROUND: The association of recombinant FSH (rFSH) plus recombinant LH (rLH) is currently used for Controlled Ovarian Stimulation (COS) in human IVF, but its efficacy has, to date, not yet been compared to that of human Menopausal Gonadotropin (hMG), the FSH + LH activity-containing urinary drug. METHODS: Eight hundred forty-eight (848) IVF patients classified as expected “poor” or “normal” responders according to antral follicle count (AFC) and basal (day 3) FSH were treated with rFSH + rLH (2:1 ratio, n = 398, Group A) or hMG (n = 450, Group B). Data were collected under real-life practice circumstances and the pregnancy rate with fresh embryos was calculated by stratifying patients according to the number of retrieved oocytes (1–2, 3–4, 5–6, 7–8, >8). RESULTS: Overall, the pregnancy rate in both groups progressively improved according to the number of oocytes retrieved. When comparing patients within the same subgroup of oocyte yield, Group A and B showed a comparable outcome up to the reported highest yield (>8). When more than 8 oocytes were available, Group A had a significantly better pregnancy rate outcome. Patients’ characteristics did not significantly differ between the two groups and the better outcome in the best responding patients in Group A was confirmed by a multivariable logistic regression analysis, that showed that both the use of rFSH + rLH and the total number of retrieved oocytes increased the probability of pregnancy with odd ratio (OR) of 1.628 and 1.083, respectively. CONCLUSIONS: When comparing patients with the same number of retrieved oocytes under real-life circumstances, the association of rFSH + rLH results in a significantly higher pregnancy rate than hMG when more than 8 oocytes are retrieved. The reason(s) for this are unknown, but a more favorable effect on oocyte quality and/or endometrial receptivity could be involved

    Performance Evaluation of a Direct Absorption Collector for Solar Thermal Energy Conversion

    Get PDF
    The solar absorption efficiency of water as a base-fluid can be significantly improved by suspending nanoparticles of various materials in it. This experimental work presents the photo thermal performance of water-based nano-fluids of graphene oxide (GO), zinc oxide (ZnO), copper oxide (CuO), and their hybrids under natural solar flux for the first time. Nanofluid samples were prepared by the two-step method and the photothermal performance of these nanofluid samples was conducted under natural solar flux in a particle concentration range from 0.0004 wt % to 0.0012 wt %. The photothermal efficiency of water-based 0.0012 wt % GO nanofluid was 46.6% greater than that of the other nanofluids used. This increased photothermal performance of GO nanofluid was associated with its good stability, high absorptivity, and high thermal conductivity. Thus, pure graphene oxide (GO) based nanofluid is a potential candidate for direct absorption solar collection to be used in different solar thermal energy conversion applications

    Sulfur rich coal gasification and low impact methanol production

    Get PDF
    In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3%) and the higher methanol production (about 0.5%) without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide) by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme

    Techno-economic comparison between different technologies for CO2-free power generation from coal

    No full text
    Since coal will be widely used in the next decades, mainly in the developing countries such as China and India, carbon capture and storage (CCS) technologies will have a key role in the containment of global warming. This paper presents a techno-economic comparison between the most promising power generation technologies for a CO2-free power generation in a short-term future. In particular, three different power generation technologies have been considered in their conventional (without CCS) and CO2-free configurations: (a) ultra supercritical (USC) pulverized coal combustion, (b) oxy-coal combustion (OCC) and (c) integrated gasification combined cycle (IGCC). Process simulation, based on Aspen Plus and Gate Cycle commercial tools, allows to calculate plant performance, including the energy penalty due to the CCS system (10.9% points for USC and 8.7% points for IGCC). In parallel, a detailed economic assessment shows that, among the commercial-ready technologies, USC could be the most convenient solution for power generation without CCS (presenting a levelized cost of electricity – LCOE – of 38.6 €/MW h, significantly lower than 43.7 €/MW h of IGCC), whereas IGCC becomes competitive for CO2-free systems (with a LCOE of 59.6 €/MW h, to be compared with 63.4 €/MW h of USC). Moreover, oxy-coal combustion, which is currently not mature enough for commercial-scale applications, promises to become strongly competitive for CCS applications due to its relatively low levelized cost of electricity (62.8 €/MW h). This kind of analysis typically presents strong uncertainties, due to the variability of several key parameters (e.g. fuel and CCS prices, determined by the fluctuation of the international markets, or an improvement of the technologies). Therefore, a sensitivity analysis has been done to determine the effects of these potential fluctuation or the improvement on the economic performance of the plant
    corecore