45 research outputs found

    Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma

    Get PDF
    BACKGROUND: Otitis media is one of the most common infections of early childhood. Surfactant protein A functions as part of the innate immune response, which plays an important role in preventing infections early in life. This prospective study utilized a candidate gene approach to evaluate the association between polymorphisms in loci encoding SP-A and risk of otitis media during the first year of life among a cohort of infants at risk for developing asthma. METHODS: Between September 1996 and December 1998, women were invited to participate if they had at least one other child with physician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Genotyping was done on 355 infants for whom whole blood and complete otitis media data were available. RESULTS: Polymorphisms at codons 19, 62, and 133 in SP-A1, and 223 in SP-A2 were associated with race/ethnicity. In logistic regression models incorporating estimates of uncertainty in haplotype assignment, the 6A(4)/1A(5)haplotype was protective for otitis media among white infants in our study population (OR 0.23; 95% CI 0.07,0.73). CONCLUSION: These results indicate that polymorphisms within SP-A loci may be associated with otitis media in white infants. Larger confirmatory studies in all ethnic groups are warranted

    Respiratory symptoms among infants at risk for asthma: association with surfactant protein A haplotypes

    Get PDF
    BACKGROUND: We examined the association between single nucleotide polymorphisms (SNPs) in loci encoding surfactant protein A (SFTPA) and risk of wheeze and persistent cough during the first year of life among a cohort of infants at risk for developing asthma. METHODS: Between September 1996 and December 1998, mothers of newborn infants were invited to participate if they had an older child with clinician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Due to the association of SFTPA polymorphisms and race/ethnicity, analyses were restricted to 221 white infants for whom whole blood and respiratory data were available. Ordered logistic regression models were used to examine the association between respiratory symptom frequency and SFTPA haplotypes. RESULTS: The 6A allele haplotype of SFTPA1, with an estimated frequency of 6% among our study infants, was associated with an increased risk of persistent cough (OR 3.69, 95% CI 1.71, 7.98) and wheeze (OR 4.72, 95% CI 2.20, 10.11). The 6A/1A haplotype of SFTPA, found among approximately 5% of the infants, was associated with an increased risk of persistent cough (OR 3.20, 95% CI 1.39, 7.36) and wheeze (OR 3.25, 95% CI 1.43, 7.37). CONCLUSION: Polymorphisms within SFTPA loci may be associated with wheeze and persistent cough in white infants at risk for asthma. These associations require replication and exploration in other ethnic/racial groups

    Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence

    Get PDF
    Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population

    Bacterial Signatures of Paediatric Respiratory Disease : An Individual Participant Data Meta-Analysis

    Get PDF
    Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies.Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses.Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively.Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.Peer reviewe

    Panel 4 : Report of the Microbiology Panel

    Get PDF
    Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe

    Panel 6 : Vaccines

    Get PDF
    Objective. To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources. PubMed database of the National Library of Science. Review Methods. We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions. Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice. OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.Peer reviewe

    Genomic Subtraction Followed by Dot Blot Screening of Streptococcus pneumoniae Clinical and Carriage Isolates Identifies Genetic Differences Associated with Strains That Cause Otitis Media

    No full text
    Streptococcus pneumoniae strains are the leading cause of bacterial otitis media, yet little is known about specific bacterial factors important for this disease. We utilized a molecular epidemiological approach involving genomic subtraction of the S. pneumoniae serogroup 19 middle ear strain 5093 against the laboratory strain R6. Resulting subtraction PCR (sPCR) products were used to screen a panel of 93 middle ear, 90 blood, 35 carriage, and 58 cerebrospinal fluid isolates from young children to identify genes found more frequently among middle ear isolates. Probe P41, similar to a hypothetical protein of Brucella melitensis, occurred among 41% of middle ear isolates and was found 2.8 (95% confidence interval [CI], 1.32 to 6.5), 3.3 (95% CI, 1.9 to 5.7), and 1.8 (95% CI, 1.1 to 3.0) times more frequently among middle ear strains than carriage, blood, or meningitis strains, respectively. sPCR fragment H10, similar to an unknown Streptococcus agalactiae protein, was present in 31% of middle ear isolates and occurred 3.6 (95% CI, 1.2 to 11.2), 2.8 (95% CI, 1.5 to 5.4), and 2.6 (95% CI, 1.2 to 5.5) times more often among middle ear isolates than carriage, blood, or meningitis strains, respectively. These studies have identified two genes of potential importance in otitis media virulence. Further studies are warranted to outline the precise role of these genes in otitis media pathogenesis

    Dolosigranulum pigrum cooperation and competition in human nasal microbiota

    Get PDF
    Multiple epidemiological studies identify Dolosigranulum pigrum as a candidate beneficial bacterium based on its positive association with health, including negative associations with nasal/nasopharyngeal colonization by the pathogenic species Staphylococcus aureus and Streptococcus pneumoniae Using a multipronged approach to gain new insights into D. pigrum function, we observed phenotypic interactions and predictions of genomic capacity that support the idea of a role for microbe-microbe interactions involving D. pigrum in shaping the composition of human nasal microbiota. We identified in vivo community-level and in vitro phenotypic cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. aureus growth in vitro, whereas robust inhibition of S. pneumoniae required both D. pigrum and a nasal Corynebacterium together. D. pigrum l-lactic acid production was insufficient to account for these inhibitions. Genomic analysis of 11 strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple predicted auxotrophies consistent with D. pigrum relying on its human host and on cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum harbored a diverse repertoire of biosynthetic gene clusters, some of which may have a role in microbe-microbe interactions. These new insights into D. pigrum's functions advance the field from compositional analysis to genomic and phenotypic experimentation on a potentially beneficial bacterial resident of the human upper respiratory tract and lay the foundation for future animal and clinical experiments.IMPORTANCEStaphylococcus aureus and Streptococcus pneumoniae infections cause significant morbidity and mortality in humans. For both, nasal colonization is a risk factor for infection. Studies of nasal microbiota identify Dolosigranulum pigrum as a benign bacterium present when adults are free of S. aureus or when children are free of S. pneumoniae Here, we validated these in vivo associations with functional assays. We found that D. pigrum inhibited S. aureusin vitro and, together with a specific nasal Corynebacterium species, also inhibited S. pneumoniae Furthermore, genomic analysis of D. pigrum indicated that it must obtain key nutrients from other nasal bacteria or from humans. These phenotypic interactions support the idea of a role for microbe-microbe interactions in shaping the composition of human nasal microbiota and implicate D. pigrum as a mutualist of humans. These findings support the feasibility of future development of microbe-targeted interventions to reshape nasal microbiota composition to exclude S. aureus and/or S. pneumoniae
    corecore