468 research outputs found

    Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    Get PDF
    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch

    Cold-flow startup test summary of a full-scale nuclear rocket engine using a radial turbopump

    Get PDF
    Cold flow startup test on nuclear rocket engine using radial turbopum

    Transfer function determination of the primary loop of a conceptual nuclear Brayton space powerplant

    Get PDF
    Transfer functions for primary loop of conceptual nuclear Brayton space power plan

    Extracellular Matrix Proteins and Tumor Angiogenesis

    Get PDF
    Tumor development is a complex process that relies on interaction and communication between a number of cellular compartments. Much of the mass of a solid tumor is comprised of the stroma which is richly invested with extracellular matrix. Within this matrix are a host of matricellular proteins that regulate the expression and function of a myriad of proteins that regulate tumorigenic processes. One of the processes that is vital to tumor growth and progression is angiogenesis, or the formation of new blood vessels from preexisting vasculature. Within the extracellular matrix are structural proteins, a host of proteases, and resident pro- and antiangiogenic factors that control tumor angiogenesis in a tightly regulated fashion. This paper discusses the role that the extracellular matrix and ECM proteins play in the regulation of tumor angiogenesis

    Operating characteristics of the primary flow loop of a conceptual nuclear Brayton space powerplant

    Get PDF
    Steady state and transient operating characteristics of lithium cooled primary flow loop of nuclear Brayton space power plan

    The Role of Dysregulated Glucose Metabolism in Epithelial Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer and also one of the most poorly understood. Other health issues that are affecting women with increasing frequency are obesity and diabetes, which are associated with dysglycemia and increased blood glucose. The Warburg Effect describes the ability of fast-growing cancer cells to preferentially metabolize glucose via anaerobic glycolysis rather than oxidative phosphorylation. Recent epidemiological studies have suggested a role for hyperglycemia in the pathogenesis of a number of cancers. If hyperglycemia contributes to tumour growth and progression, then it is intuitive that antihyperglycemic drugs may also have an important antitumour role. Preliminary reports suggest that these drugs not only reduce available plasma glucose, but also have direct effects on cancer cell viability through modification of molecular energy-sensing pathways. This review investigates the effect that hyperglycemia may have on EOC and the potential of antihyperglycemic drugs as therapeutic adjuncts

    Shot-noise-limited spin measurements in a pulsed molecular beam

    Get PDF
    Heavy diatomic molecules have been identified as good candidates for use in electron electric dipole moment (eEDM) searches. Suitable molecular species can be produced in pulsed beams, but with a total flux and/or temporal evolution that varies significantly from pulse to pulse. These variations can degrade the experimental sensitivity to changes in spin precession phase of an electri- cally polarized state, which is the observable of interest for an eEDM measurement. We present two methods for measurement of the phase that provide immunity to beam temporal variations, and make it possible to reach shot-noise-limited sensitivity. Each method employs rapid projection of the spin state onto both components of an orthonormal basis. We demonstrate both methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one of them to measure the magnetic moment of this state with increased accuracy relative to previous determinations.Comment: 12 pages, 6 figure

    A new technique for elucidating β\beta-decay schemes which involve daughter nuclei with very low energy excited states

    Get PDF
    A new technique of elucidating β\beta-decay schemes of isotopes with large density of states at low excitation energies has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique has been demonstrated on the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ\gamma rays energies to be determined with a precision of a few tens of electronvolts, which was sufficient for the analysis of the Rydberg-Ritz combinations in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ\gamma rays arising from the decay of 183Hg from those due to the daughter decays
    corecore