79 research outputs found

    The Future of Energy Storage Systems

    Get PDF

    Micro- and Nano-Air Vehicles: State of the Art

    Get PDF
    Micro- and nano air vehicles are defined as “extremely small and ultra-lightweight air vehicle systems” with a maximum wingspan length of 15 cm and a weight less than 20 grams. Here, we provide a review of the current state of the art and identify the challenges of design and fabrication. Different configurations are evaluated, such as fixed wings, rotary wings, and flapping wings. The main advantages and drawbacks for each typology are identified and discussed. Special attention is given to rotary-wing vehicles (helicopter concept); including a review of their main structures, such as the airframe, energy storage, controls, and communications systems. In addition, a review of relevant sensors is also included. Examples of existing and future systems are also included. Micro- and nano-vehicles with rotary wings and rechargeable batteries are dominating. The flight times of current systems are typically around 1 hour or less due to the limited energy storage capabilities of the used rechargeable batteries. Fuel cells and ultra capacitors are promising alternative energy supply technologies for the future. Technology improvements, mainly based on micro- and nanotechnologies, are expected to continue in an evolutionary way to improve the capabilities of future micro- and nano air vehicles, giving improved flight times and payload capabilities

    Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia earthquake (Central Italy) investigated through seismological data, DInSAR measurements, and numerical modelling

    Get PDF
    We investigate the Mw 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocenters distribution analysis. To do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend our analysis by applying a 2D numerical modelling approach based on the finite element method, implemented in a structural-mechanic framework, and exploiting the available geological and seismological data, and the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In this case, we consider two different scenarios: the first one based on a single SW-dipping fault, the latter on a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the Mw 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism

    MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis

    Get PDF
    MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA

    The SciCryo Project and Cryogenic Scintillation of Al2O3Al_2O_3 for Dark Matter

    No full text
    International audienceWe discuss cryogenic scintillation of Al2O3. Room-temperature measurements with α particles are first carried out to study effect of Ti concentration on response. Measurements under X-rays between room temperature and 10 K confirm a doubling of light output. The integration of a scintillation-phonon detector into an ionization-phonon dark matter search is underway, and the quenching factor for neutrons has been verified

    Chemerin and PEDF are metaflammation-related biomarkers of disease activity and obesity in rheumatoid arthritis

    Get PDF
    Objective: Obesity is a risk factor for Rheumatoid Arthritis (RA) being associated to low grade inflammation. This study aimed to determine whether PEDF and Chemerin are biomarkers of inflammation related to fat accumulation in RA and to investigate whether weight loss associates with clinical disease improvement through the modification of fat-related biomarkers in overweight/obese RA with low-moderate disease. Participants and Methods: Two-hundred and thirty RA patients were enrolled, of whom 176 at disease onset treated according to a treat-to-target strategy (T2T) and 54 overweight/obese RA in stable therapy and low-moderate disease activity. Gene expression of adipokines, interleukin-6 and their receptors were examined in adipose tissue from obese RA. Obese RA with low-moderate disease activity underwent low-calories diet aiming to Body Mass Index (BMI) reduction > 5%, maintaining RA therapy unchanged. Chemerin, PEDF and Interleukin-6 plasma values were assessed by ELISA and disease activity was evaluated. Results: At RA onset, PEDF and Chemerin plasma values correlated with BMI (p < 0.001) but only Chemerin plasma values correlated with disease activity (p < 0.001). After adopting a T2T strategy, Chemerin arose as an independent factor associated with remission in early RA [OR(95%CIs):0.49(0.25-0.97)]. Moreover, after low-calories diet, RA with low-moderate disease activity reaching BMI reduction 655% (62.6%) at 6 months had significant decrease of PEDF (p < 0.05) and Chemerin (p < 0.05) plasma values, in parallel with the improvement in disease activity. Conclusions: PEDF and Chemerin arose as biomarkers of obesity and metaflammation respectively, providing a link between chronic inflammation and excess of body weight in RA. Therefore, BMI reduction of at least 5% in obese RA allowed better disease control without modifying RA treatment

    Overweight/obesity affects histological features and inflammatory gene signature of synovial membrane of Rheumatoid Arthritis

    Get PDF
    Overweight/obesity influence disease burden and clinical outcome of Rheumatoid Arthritis (RA). The impact of overweight/obesity on synovial tissue (ST) inflammation is largely unknown. Here, we investigated the histological and transcriptional signature of ST obtained from RA in different disease phases (disease onset, failure to first-line conventional DMARDs and in sustained clinical and ultrasound remission) finding that overweight/obese DMARDs naive RA showed higher likelihood of follicular synovitis, higher IHC scores for sublining inflammatory cells (CD68+, CD21+ and CD20+) and higher IL-1RA plasma levels than normal weight RA. Regardless to the synovitis pattern, overweight/obese DMARDs naive RA showed a worse clinical response to "Treat-to-target" (T2T) than normal weight RA at 6 and 12 months follow-up. Conversely, MTX-IR RA did not show significant differences in synovial inflammation based on BMI category. Overweight/obese RA in stable clinical and US remission showed higher degree of residual synovitis in terms of sublining CD68+, CD20+ cells and lining and sublining CD3+ compared to normal weight RA. Finally, gene expression profile analysis revealed that ST of overweight/obese DMARDs naive RA is enriched by CCL3 and MyD88 compared to normal weight RA in sustained disease remission, the latter correlating with BMI and IHC scores for synovial CD68+ cells. These findings suggest that indeed overweight/obese RA show higher degree of synovitis at disease onset and after remission achievement that influences the response rate to T2T and should be considered within the management of patients with RA

    The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults

    Get PDF
    The Ionian Sea in southern Italy is at the center of active interaction and convergence between the Eurasian and African–Adriatic plates in the Mediterranean. This area is seismically active with instrumentally and/or historically recorded Mw > 7:0 earthquakes, and it is affected by recently discovered long strike-slip faults across the active Calabrian accretionary wedge. Many mud volcanoes occur on top of the wedge. A recently discovered one (called the Bortoluzzi Mud Volcano or BMV) was surveyed during the Seismofaults 2017 cruise (May 2017). Bathymetric backscatter surveys, seismic reflection profiles, geochemical and earthquake data, and a gravity core are used here to geologically, geochemically, and geophysically characterize this structure. The BMV is a circular feature ' 22m high and ' 1100m in diameter with steep slopes (up to a dip of 22 ). It sits atop the Calabrian accretionary wedge and a system of flowerlike oblique-slip faults that are probably seismically active as demonstrated by earthquake hypocentral and focal data. Geochemistry of water samples from the seawater column on top of the BMV shows a significant contamination of the bottom waters from saline (evaporite-type) CH4-dominated crustalderived fluids similar to the fluids collected from a mud volcano located on the Calabria mainland over the same accretionary wedge. These results attest to the occurrence of open crustal pathways for fluids through the BMV down to at least the Messinian evaporites at about 3000 m. This evidence is also substantiated by helium isotope ratios and by comparison and contrast with different geochemical data from three seawater columns located over other active faults in the Ionian Sea area. One conclusion is that the BMV may be useful for tracking the seismic cycle of active faults through geochemical monitoring. Due to the widespread diffusion of mud volcanoes in seismically active settings, this study contributes to indicating a future path for the use of mud volcanoes in the monitoring and mitigation of natural hazards.Published1-233SR TERREMOTI - Attività dei CentriJCR Journa

    Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data

    Get PDF
    We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR)and GPS measurements to determine the source parameters for the three main shocks of the 2016Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw6.1, 5.9, and 6.5,respectively). Our preferred model is consistent with the activation of four main coseismic asperitiesbelonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-Mount Bove alignment. Additional slip, equivalent to aMw~ 6.1–6.2 earthquake, on a secondary (1) NEdipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the mainsystem is required to better reproduce the complex deformation pattern associated with the greatestseismic event (theMw6.5 earthquake). The recognition of ancillary faults involved in the sequencesuggests a complex interaction in the activated crustal volume between the main normal faults and thesecondary structures and a partitioning of strain releas
    • …
    corecore