7 research outputs found
B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels
Objectives. To correlate the kinetics of B-cell repopulation with relapse after B-cell depletion therapy in SLE patients and address whether variation in relapse rate, B-cell numbers and phenotype are related to anti-dsDNA antibody levels
Identifying invasive species threats, pathways, and impacts to improve biosecurity
Managing invasive species with prevention and early-detection strategies can avert severe ecological and economic impacts. Horizon scanning, an evidence-based process combining risk screening and consensus building to identify threats, has become a valuable tool for prioritizing invasive species management and prevention. We assembled a working group of experts from academic, government, and nonprofit agencies and organizations, and conducted a multi-taxa horizon scan for Florida, USA, the first of its kind in North America. Our primary objectives were to identify high-risk species and their introduction pathways, to detail the magnitude and mechanism of potential impacts, and, more broadly, to demonstrate the utility of horizon scanning. As a means to facilitate future horizon scans, we document the process used to generate the list of taxa for screening. We evaluated 460 taxa for their potential to arrive, establish, and cause negative ecological and socioeconomic impacts, and identified 40 potential invaders, including alewife, zebra mussel, crab-eating macaque, and red swamp crayfish. Vertebrates and aquatic invertebrates posed the greatest invasion threat, over half of the high-risk taxa were omnivores, and there was high confidence in the scoring of high-risk taxa. Common arrival pathways were ballast water, biofouling of vessels, and escape from the pet/aquarium/horticulture trade. Competition, predation, and damage to agriculture/forestry/aquaculture were common impact mechanisms. We recommend full risk analysis for the high-risk taxa; increased surveillance at Florida's ports, state borders, and high-risk pathways; and periodic review and revision of the list. Few horizon scans detail the comprehensive methodology (including list-building), certainty estimates for all scoring categories and the final score, detailed pathways, and the magnitude and mechanism of impact. Providing this information can further inform prevention efforts and can be efficiently replicated in other regions. Moreover, harmonizing methodology can facilitate data sharing and enhance interpretation of results for stakeholders and the general public.</p
Teacher Interviews - Post-program followup
https://portal.nifa.usda.gov/web/crisprojectpages/1025670-collaborative-curriculum-design-for-authentic-agriscience-literacy.htm
Scanning the horizon for invasive plant threats using a data-driven approach
Early detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning that combines a data-driven approach with rapid risk assessment and consensus building among experts can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are generally favorable for plant establishment, and a history of negative impacts from invasive plants. We began with an initial list of 2128 non-native plant taxa that are known invaders or crop pests. We built on previous invasive species horizon scans by developing data-based criteria to prioritize 100 taxa for rapid risk assessment. The semi-automated prioritization process included selecting taxa “on the horizon” (i.e., not yet in the target location and not on a noxious weed list) with climate matching, naturalization history, “weediness” record, and global commonness. We derived overall invasion risk scores with rapid risk assessment by evaluating the likelihood of each of the taxa arriving, establishing, and having an impact in Florida. Then, following a consensus-building discussion, we identified six plant taxa as high risk, with overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. Finally, we evaluated our initial and final lists for potential biases. Assessors tended to assign higher risk scores to taxa that had more available information. In addition, we identified biases towards four plant families and certain geographical regions of origin. Our horizon scan approach identified taxa conforming to metrics of high invasion risk and used a methodology refined for plants that can be applied to other locations
Scanning the horizon for invasive plant threats to Florida, USA
Early detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning, which pairs rapid risk assessment with consensus building among experts, can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are favorable for plant establishment, and a history of negative impacts from invasive plants. We began with a list of 2128 non-native plant species and subspecies that are crop pests or invasive somewhere in the world and used publicly available data to prioritize 100 taxa for rapid risk assessment. We derived overall invasion risk scores by evaluating the likelihood and certainty of each of the 100 taxa arriving, establishing, and having an impact in Florida. Through the rapid risk assessments and a consensus-building discussion, we identified six plant taxa with high overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. We recommend more thorough risk assessments for each of these six species and, if appropriate, policy and management actions to limit invasive plant introduction and establishment in Florida.