138 research outputs found

    Hidden Hollow Ranch v. Fields, 92 P.3d 1185 (Mont. 2004)

    Get PDF

    How do filamentous pathogens deliver effector proteins into plant cells?

    Get PDF
    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens

    The Poplar-Poplar Rust Interaction: Insights from Genomics and Transcriptomics

    Get PDF
    Poplars are extensively cultivated worldwide, and their susceptibility to the leaf rust fungus Melampsora larici-populina leads to considerable damages in plantations. Despite a good knowledge of the poplar rust life cycle, and particularly the epidemics on poplar, the perennial status of the plant host and the obligate biotrophic lifestyle of the rust fungus are bottlenecks for molecular investigations. Following the completion of both M. larici-populina and Populus trichocarpa genome sequences, gene families involved in poplar resistance or in rust fungus virulence were investigated, allowing the identification of key genetic determinants likely controlling the outcome of the interaction. Specific expansions of resistance and defense-related genes in poplar indicate probable innovations in perennial species in relation with host-pathogen interactions. The genome of M. Larici-populina contains a strikingly high number of genes encoding small secreted proteins (SSPs) representing hundreds of candidate effectors. Transcriptome analyses of interacting partners in compatible and incompatible interactions revealed conserved set of genes involved in poplar defense reactions as well as timely regulated expression of SSP transcripts during host tissues colonisation. Ongoing functional studies of selected candidate effectors will be achieved mainly on the basis of recombinant protein purification and subsequent characterisation

    A survey of highly cited studies on plant pathogen effectors during the last two decades (2000-2020)

    Get PDF
    Plant effector biology is a research area that describes how plant-associated organisms modulate host structures and function to promote colonization by using small molecules (effectors). In this article, we analyzed 249 highly cited publications focused on plant pathogen effectors (i.e., Highly Influential studies on plant Pathogen Effectors; thereafter HIPEs) published between 2000 and 2020. This analysis identifies countries, organizations, and journals that contributed HIPEs, and reveals the evolution of research trends, model molecules, and model organisms over the last two decades. We notably show an increasing proportion of studies focused on effectors of biotrophic and hemibiotrophic fungi upon time. Our snapshot of the highly influential plant effector biology papers may help new comers in the field to gain an analytical understanding of this research area

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors

    Neurodegenerative disease: amyloid pores from pathogenic mutations

    Get PDF
    Alzheimer's and Parkinson's diseases are associated with the formation in the brain of amyloid fibrils from beta-amyloid and alpha-synuclein proteins, respectively. It is likely that oligomeric fibrillization intermediates (protofibrils), rather than the fibrils themselves, are pathogenic, but the mechanism by which they cause neuronal death remains a mystery. We show here that mutant amyloid proteins associated with familial Alzheimer's and Parkinson's diseases form morphologically indistinguishable annular protofibrils that resemble a class of pore-forming bacterial toxins, suggesting that inappropriate membrane permeabilization might be the cause of cell dysfunction and even cell death in amyloid diseases

    Emerging oomycete threats to plants and animals

    Get PDF
    Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases to both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture, and natural ecosystems. They include the plant pathogens Phytophthora infestans, Phytophthora palmivora, Phytophthora ramorum, Plasmopara obducens, and the animal pathogens Aphanomyces invadans, Saprolegnia parasitica, and Halioticida noduliformans. For each species, we describe its pathology, importance, and impact, discuss why it is an emerging threat, and briefly review current research activities
    corecore