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Abstract: Fungal and oomycete plant parasites are
among the most devastating pathogens of food crops.
These microbes secrete effector proteins inside plant cells
to manipulate host processes and facilitate colonization.
How these effectors reach the host cytoplasm remains an
unclear and debated area of plant research. In this article,
we examine recent conflicting findings that have gener-
ated discussion in the field. We also highlight promising
approaches based on studies of both parasite and host
during infection. Ultimately, this knowledge may inform
future broad spectrum strategies for protecting crops
from such pathogens.

Introduction

Fungi and oomycetes are eukaryotic filamentous microbes,

some of which are devastating plant pathogens that affect

important food crops. For instance the oomycete potato blight

pathogen Phytophthora infestans triggered the Irish famine during the

19th century and remains the most important threat to potato

production, whereas fungi such as the ascomycete rice blast

pathogen Magnaporthe oryzae and the basidiomycete wheat stem rust

pathogen Puccinia graminis f. sp. tritici continuously threaten global

food security [1,2]. During infection, these parasites engage in

complete or partial biotrophic interactions, meaning that they

develop feeding relationships with the living cells of their hosts by

intimately associating with plant tissues. These microbes differen-

tiate specialized parasitic structures within infected tissues, such as

hyphae, which explore the extracellular space (apoplast), or

invasive hyphae and haustoria, which penetrate host cell cavities

and invaginate the host’s plasma membrane (Figure 1) [3,4].

Historically, hyphae and haustoria have been described as feeding

structures that serve the nutrition of the parasites. But more

recently these structures have emerged as sites of secretion and

translocation into host cells of a class of pathogen virulence

proteins known as effectors (Figure 1) [5,6].

Effectors manipulate plant processes to the advantage of the

parasite, promoting host infection and colonization, yet they may

also activate plant immune receptors on resistant host genotypes

[7]. During the past decade, it has become apparent that

numerous fungal and oomycete effectors operate inside the host

cell cytoplasm [8–11], extending to these pathogens a concept first

put forward for plant pathogenic bacteria [12]. Nevertheless, the

mechanisms by which effector proteins traffic to the plant cell

cytoplasm remain poorly understood in contrast to the well-

studied bacterial secretion systems. Solving the enigma of how

filamentous pathogens deliver their effectors to the inside of plant

cells is a fundamental question in plant pathology. Moreover, the

prevention of effector secretion or internalization into host cells is

likely to interfere with parasitic growth, thus representing a

potential crop protection strategy for use in agriculture. Also,

effectors target different host subcellular compartments and

mediate a variety of biochemical modifications, thus representing

valuable molecular tools for fundamental and applied plant

biology studies [7,13].

Filamentous pathogen effector proteins that translocate into

plant cells are highly diverse in sequence and structure and have

most likely evolved a variety of mechanisms to traffic to the host

cytoplasm. However, a common theme is that host-targeting relies

on N-terminal translocation domains that are located after a

general secretory signal peptide (Figure 2). In the oomycetes, host-

targeting domains contain overrepresented motifs, such as the

RXLR, LFLAK, and CHXC amino acid sequences, which define

many predicted effector repertoires in different species [14]. In one

early study, Whisson and colleagues (2007) showed that the N-

terminus of the AVR3a effector from P. infestans is required for

translocation into potato cells, a finding that supported the view

that the RXLR domain functions as a leader sequence that

mediates host cell targeting [5].

Identification of motifs involved in cell entry is not as advanced

for fungal effectors as it is for oomycetes. Large families of

candidate effectors have been identified from fungal genomes,

largely on the basis of predicted N-terminal signal peptides, small

size, and lack of similarity to other proteins [15,16]. Additionally,

sequences that mediate host-cell translocation have been detected

within host-specific toxins of necrotrophic fungi. One well-studied

example is the C-terminal RGD motif of ToxA from Pyrenophora

tritici-repentis, which is required for entry into host plant cells [17].

Also, domains in the N-termini of the flax rust fungus Melampsora

lini effectors AvrM and AvrL567 mediate uptake into plant cells,

although whether these sequences determine entry into plant cells

or other processes, such as escape from plant endosomes following

endocytosis, is still unclear (see below) [6,18]. However, a
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consensus cell entry motif for fungal proteins, analogous to the

common RXLR in oomycetes, has not been defined.

Current Models and Controversies

A number of studies aimed at elucidating the function of N-

terminal host-targeting domains of filamentous plant pathogen

effectors have been published and are summarized in Table 1.

Monitoring effector trafficking from the parasite to the host cell is

technically challenging. Indeed, many filamentous plant pathogens

are not amenable to genetic manipulation, and the direct

visualization of effector proteins during infection has proven to

be elusive. In addition, effectors traffic across dynamic interfaces,

such as haustoria, that can only form inside host tissue. As a

consequence, the results and models generated to date are mostly

based on proxy experiments conducted independently of the

pathogen. They essentially tackle the question of ‘‘how effectors

cross the host plasma membrane’’ (summarized in [19]), leading to

a model that involves ‘‘autonomous’’ or ‘‘pathogen-independent’’

host cell entry [6,20–22]. Kale and colleagues (2010) also proposed

Figure 1. Fungal and oomycete structures for effector secretion. Left panel. Oomycete and fungal plant parasites differentiate infection
structures such as extracellular hyphae, as well as invasive hyphae and haustoria that penetrate the host cell cavity and invaginate the plasma
membrane. Haustoria (a) and hyphae (b) secrete effectors that are translocated into host cell cytoplasm by unknown mechanisms. Right panel.
Effectors secreted from haustoria (a) and hyphae (b) cross different biological interfaces (extra-haustorial matrix [EHMx]/extra-haustorial membrane
[EHM] for effectors secreted from haustoria, and apoplast/plant cell wall/plant plasma membrane for effectors secreted from hyphae).
doi:10.1371/journal.pbio.1001801.g001

Figure 2. N-terminal effector domains proposed to mediate host-cell entry. Effectors from fungal (left) and oomycete (right) pathogens.
Divergent oomycete and fungal effectors carry a general secretion signal peptide followed by non-conserved N-terminal regions called ‘‘uptake’’ or
‘‘targeting/translocation’’ domains that have been proposed to mediate host-cell entry. In oomycetes, small conserved amino acids motifs (e.g., RXLR,
CHXC, or LFLAK) have been identified within these regions, which help to define effector families with many members.
doi:10.1371/journal.pbio.1001801.g002
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a mechanistic model for this phenomenon. The RXLR motif in

oomycetes or degenerate RXLR-like motifs in fungi define cell entry

domains and bind extracellular phosphatidylinositol-3-phosphate

(PI3P) to mediate effector endocytosis into host cells [22,23].

However, the experimental findings that underpin this and related

models have proven controversial with several studies alternatively

supporting or challenging the reproducibility of the assays and the

robustness of the conclusions (see Table 1 for details).

First, the occurrence of RXLR-like motifs in fungal effectors

[22,23] that are functionally and structurally related to oomycete

RXLR motifs is questionable [18]. The RXLR consensus,

associated sequence motifs, and their position near N-termini

helped to define the RXLR effector superfamily, which includes

hundreds of divergent members in the Phytophthora species, most of

which (87%) carry the RXLR sequence [14,24]. Although variants

have been detected, notably QLLR and GKLR in some downy

mildew pathogens, the RXLR motif is highly conserved in

Phytophthora effectors even though these proteins are rapidly

evolving and can display high levels of amino acid polymorphism

[14,24,25]. This indicates that the RXLR motif is mostly under

purifying selection, meaning that variants that have arisen have

been mostly eliminated by natural selection. Nonetheless, Kale

and colleagues (2010) used extensive mutagenesis studies of this

sequence combined with cell re-entry and uptake assays (see next

paragraph) to show that the motif is highly plastic and that some

fungal effectors carry N-terminal RXLR-like motifs, which are

highly degenerate as [RHK]X[LMIFYW] [22]. By using similar

assays, some authors reported the existence of functional RXLR-

like motifs in various fungal effectors, whereas others did not

(Table 1). Interestingly, structural investigations of the oomycete

effectors Avr3a4 and Avh5 revealed that RXLR domains are

intrinsically disordered [8,26]. In contrast, RXLR-like motifs of the

fungal effectors AvrL567 and AvrM are embedded in well-defined

structures [18,27]. Hence, based on the few structures currently

available, amino acids similarities within the effector primary

sequences are not matched by their structural properties.

Second, the two main assays used to demonstrate pathogen-

independent effector entry into host cells are under debate. One

such method, the ‘‘cell re-entry assay,’’ is based on the

heterologous expression of a full-length effector protein, including

its secretion signal peptide, in a plant cell. The expressed effector,

or effector-fluorescent protein fusion, is secreted into the

extracellular space (apoplast), and its re-entry into the plant cell

is tracked [20]. This method has been used to report autonomous

cell entry of several fungal and oomycete effectors and to identify

the uptake domains required for entry [6,21,22]. Nevertheless, this

assay cannot unambiguously demonstrate that effectors are indeed

secreted into the apoplast prior to cell re-internalisation [28] and it

is therefore not possible to exclude that effectors escape the

secretory pathway and end up inside the host cytoplasm without

crossing the plasma membrane. This limitation of the cell re-entry

assay prompted some authors to complement their experiments

with a second assay—the ‘‘uptake assay’’—in which purified

recombinant effectors fused to a fluorescent tag are applied to

plant tissue, often roots, and their entry followed by microscopy

[21–23]. Recently, the robustness and specificity of this method

have been debated (Table 1) [29,30]. Wawra and collaborators

(2013) proposed that the process of protein internalization by root

cells is non-specific and thus could not inform cell entry

mechanisms [29]. Their point was supported by the observation

that fluorescent proteins alone are taken up by plant cells at a rate

comparable to effector-fluorescent protein fusions. In response,

Tyler and colleagues (2013) state that quantitative differences

could still be observed, and reported increased entry into cells

when fluorescent proteins are fused with effectors or effector

uptake domains [30].

Figure 3. Integrated process of effector translocation. Effectors (blue) follow secretion routes (arrows) within a pathogen (orange), are
secreted into host-parasite interfaces (grey), cross a membrane surrounding the host cell (green), and finally enter the host cell cytoplasm. Each
translocation step is likely to be influenced by host- and parasite-derived mechanisms that need to be considered when studying effector trafficking.
doi:10.1371/journal.pbio.1001801.g003
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Finally, there have been conflicting reports as to whether

oomycete RXLR domains can bind phospholipids to mediate cell

entry (Table 1). Bhattacharjee and colleagues (2012) confirmed

that the RXLR domain of P. infestans effector NUK10 binds PI3P

but proposed that this binding takes place inside the pathogen

[31]. Sun and colleagues (2013) further investigated the P. sojae

effector Avh5 revealing stronger PI3P binding in the C-terminal

domain relative to the RXLR domain, but implicating both

regions in cell entry [26]. Other studies showed that amino acids

residues in the C-terminal half of some oomycete RXLR effectors,

rather than in the N-terminus, bind phospholipids and may have a

function unrelated to cell entry (Table 1) [8]. Consistent with this

idea, some have proposed that phospholipid binding stabilises

effectors [26], possibly inside host cells, rather than onto the

external surface of the host plasma membrane [8]. Wawra and

collaborators (2012) also showed that phospholipid binding of the

RXLR effector Avr3a can occur with denatured proteins, and thus

questioning the physiological relevance of phospholipid binding

[32].

In conclusion, many aspects of the mechanisms by which fungal

and oomycete effectors enter into plant cells remain unresolved.

There is therefore an urgent need to complement evidence from

proxy assays with novel experimental approaches to shed new light

on this process.

Towards a Solution: Integrated Pathogen-Host
Studies

Our basic understanding of effector trafficking has been

hampered by our inability to follow effector secretion and

translocation during infection. During translocation, effectors

cross several biological interfaces that can be modified during

the interaction, as well as new infection-specific compartments

(Figure 3) [33]. For instance, haustoria are enveloped by a newly

formed membrane called the extrahaustorial membrane (EHM),

which differs in protein composition to the plant plasma

membrane [34]. These infection-specific biological interfaces are

probably mediated by both parasite- and plant-derived factors that

need to be taken into account, as they could well influence, if not

mediate, effector translocation.

The major challenge for the community is methodological. We

therefore need to develop genetic, biochemical, and cell biological

methods to manipulate, tag, detect, and observe effectors during

infection. A growing number of oomycete and fungal plant

pathogens are now genetically transformable, thus enabling more

pathogen-centered studies. Examples of the value of pathogen-

focused studies come from the interaction between M. oryzae and

the host plant rice [33] or Ustilago maydis and maize [10]. These

pathogens produce invasive hyphae that invaginate the host cell

plasma membrane. The use of M. oryzae strains that express

fluorescently tagged effectors combined with live-cell imaging has

revealed that a highly localized structure, called the biotrophic

interfacial complex (BIC), accumulates effectors secreted from the

invasive hyphae prior to translocation into the host cell [11,35].

Such experimental systems should allow further insight into

effector trafficking by, for example, addressing the contribution of

specific residues within effectors, the influence of infection

conditions on effector translocation, and the degree to which

plant-derived molecules affect translocation (Figure 3).

The presence of predicted signal peptides in effector proteins

has led to the assumption that effectors follow the typical

eukaryotic endoplasmic reticulum (ER)/Golgi secretory pathway.

As a consequence, the secretion routes followed by effectors inside

the pathogen, prior to their secretion and translocation into host

cells, have been poorly studied but could turn out to be important

as in the case of apicomplexan parasites [31]. For instance, Yi and

colleagues (2009) reported that the ER-resident chaperone LHS1

of M. oryzae interferes with effector accumulation at the BIC, and

possibly effector secretion [36]. Interestingly, a recent paper

combined cell biology with pharmacological approaches to

identify two distinct effector secretion pathways in M. oryzae

[37]. Whereas apoplastic effectors follow the conventional ER/

Golgi secretory pathway, host-translocated effectors appear to

follow an alternative secretion route. The extent to which effectors

from other pathogens are sorted into distinct secretory pathways

remains unknown.

Biochemical approaches need to be explored too. For instance,

immunoprecipitation of tagged effectors during the course of

infection could reveal the formation of effector-associated protein

complexes during the different steps of secretion and translocation.

Mass spectrometry associated with biochemical cell fractionation

should also enable high throughput subcellular localisation of

proteins. Such methods could be applied to colonized tissues, and

would assign effectors to different plant subcellular compartments,

thus providing evidence of secretion and other valuable informa-

tion for further characterisation [10].

Finally, although the use of proxy assays alone is unlikely to

reveal the full process of effector trafficking, they remain the only

alternative in several pathogen systems, and could still provide

valuable clues. Some of the established methods, such as the plant

cell re-entry assays, need to be better understood. For instance

stable transgenic plants expressing fluorescently tagged effector

proteins driven by cell-specific promoters should be assayed. The

precise fate of heterologously expressed effector proteins also needs

to be determined using cell biological and biochemical methods,

and the use of multiple tagged proteins tested. Moreover, reagents

should be shared between labs and there should be less reliance on

transient expression assays.

In conclusion, the targeting of pathogen effectors to the

cytoplasm of their plant hosts is a complex process that involves

numerous steps (Figure 3). Studies to date have provided some

valuable information on effector trafficking in many systems, but

new methods are needed to uncover a more comprehensive

picture of this process—ideally integrated experimental systems

that will allow the detection and visualization of effectors as they

traffic from the parasite to the host cell.
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