304 research outputs found

    New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)

    Full text link
    The Pauli Exclusion Principle is one of the basic principles of modern physics and is at the very basis of our understanding of matter: thus it is fundamental importance to test the limits of its validity. Here we present the VIP (Violation of the Pauli Exclusion Principle) experiment, where we search for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by at least four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10**-29 - 10**-30 region. First experimental results, together with future plans, are presented.Comment: To appear in proceedings of the XLVI International Winter Meeting on Nuclear Physics, Bormio, Italy, January 20-26, 200

    New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)

    Get PDF
    The Pauli exclusion principle (PEP) represents one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it still spurs a lively debate, because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. A new limit on the probability that PEP is violated by electrons was estabilished by the VIP (VIolation of the Pauli exclusion principle) Collaboration, using the method of searching for PEP forbidden atomic transitions in copper. The preliminary value, {1/2}\beta^{2} \textless 4.5\times 10^{-28}, represents an improvement of about two orders of magnitude of the previous limit. The goal of VIP is to push this limit at the level of 103010^{-30}.Comment: submitted to Journal of Physics: Conference Series, by the Institute of Physic

    First measurement of kaonic helium-3 X-rays

    Get PDF
    The first observation of the kaonic 3He 3d - 2p transition was made using slow K- mesons stopped in a gaseous 3He target. The kaonic atom X-rays were detected with large-area silicon drift detectors using the timing information of the K+K- pairs of phi-meson decays produced by the DAFNE e+e- collider. The strong interaction shift of the kaonic 3He 2p state was determined to be -2+-2 (stat)+-4 (syst) eV.Comment: Accepted for publication in Phys. Lett.

    A New Measurement of Kaonic Hydrogen X rays

    Full text link
    The KˉN\bar{K}N system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the KK-series x rays of kaonic hydrogen atoms at the DAΦ\PhiNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the 1s1s atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be ϵ1s=283±36±6(syst)\epsilon_{1s} = -283 \pm 36 \pm 6 {(syst)} eV and Γ1s=541±89(stat)±22(syst)\Gamma_{1s} = 541 \pm 89 {(stat)} \pm 22 {(syst)} eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy KˉN\bar{K}N interaction.Comment: 5 figures, submitted to Physics Letters

    VIP EXPERIMENT: NEW EXPERIMENTAL LIMIT ON PAULI EXCLUSION PRINCIPLE VIOLATION BY ELECTRONS

    Get PDF
    The VIP (Violation of the Pauli Exclusion Principle) experiment is investigating one of the basic principles of modern physics, searching for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli forbidden transition. VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by three-four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10-29÷-30 region. The new experimental results, together with future plans, are presented

    Measurements of the reaction pˉpϕη\bar{p}p \to \phi \eta of antiproton annihilation at rest at three hydrogen target densities

    Full text link
    The proton-antiproton annihilation at rest into the ϕη\phi\eta final state was measured for three different target densities: liquid hydrogen, gaseous hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in the liquid hydrogen target is smaller than in the low-pressure gas target. The branching ratios of the ϕη\phi\eta channel were calculated on the basis of simultaneous analysis of the three data samples. The branching ratio for annihilation into ϕη\phi\eta from the 3S1^3S_1 protonium state turns out to be about ten times smaller as compared to the one from the 1P1^1P_1 state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters

    Determination of ππ\pi\pi scattering lengths from measurement of π+π\pi^+\pi^- atom lifetime

    Get PDF
    The DIRAC experiment at CERN has achieved a sizeable production of π+π\pi^+\pi^- atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave ππ\pi\pi scattering length difference a0a2=(.0.25330.0078+0.0080stat.0.0073+0.0078syst)Mπ+1|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\mathrm{syst})M_{\pi^+}^{-1} has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure

    The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay

    Get PDF
    Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described

    The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay

    Get PDF
    Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described
    corecore