304 research outputs found
New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)
The Pauli Exclusion Principle is one of the basic principles of modern
physics and is at the very basis of our understanding of matter: thus it is
fundamental importance to test the limits of its validity. Here we present the
VIP (Violation of the Pauli Exclusion Principle) experiment, where we search
for anomalous X-rays emitted by copper atoms in a conductor: any detection of
these anomalous X-rays would mark a Pauli-forbidden transition. ] VIP is
currently taking data at the Gran Sasso underground laboratories, and its
scientific goal is to improve by at least four orders of magnitude the previous
limit on the probability of Pauli violating transitions, bringing it into the
10**-29 - 10**-30 region. First experimental results, together with future
plans, are presented.Comment: To appear in proceedings of the XLVI International Winter Meeting on
Nuclear Physics, Bormio, Italy, January 20-26, 200
New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)
The Pauli exclusion principle (PEP) represents one of the basic principles of
modern physics and, even if there are no compelling reasons to doubt its
validity, it still spurs a lively debate, because an intuitive, elementary
explanation is still missing, and because of its unique stand among the basic
symmetries of physics. A new limit on the probability that PEP is violated by
electrons was estabilished by the VIP (VIolation of the Pauli exclusion
principle) Collaboration, using the method of searching for PEP forbidden
atomic transitions in copper. The preliminary value, {1/2}\beta^{2} \textless
4.5\times 10^{-28}, represents an improvement of about two orders of magnitude
of the previous limit. The goal of VIP is to push this limit at the level of
.Comment: submitted to Journal of Physics: Conference Series, by the Institute
of Physic
First measurement of kaonic helium-3 X-rays
The first observation of the kaonic 3He 3d - 2p transition was made using
slow K- mesons stopped in a gaseous 3He target. The kaonic atom X-rays were
detected with large-area silicon drift detectors using the timing information
of the K+K- pairs of phi-meson decays produced by the DAFNE e+e- collider. The
strong interaction shift of the kaonic 3He 2p state was determined to be -2+-2
(stat)+-4 (syst) eV.Comment: Accepted for publication in Phys. Lett.
A New Measurement of Kaonic Hydrogen X rays
The system at threshold is a sensitive testing ground for low
energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we
have measured the -series x rays of kaonic hydrogen atoms at the DANE
electron-positron collider of Laboratori Nazionali di Frascati, and have
determined the most precise values of the strong-interaction energy-level shift
and width of the atomic state. As x-ray detectors, we used large-area
silicon drift detectors having excellent energy and timing resolution, which
were developed especially for the SIDDHARTA experiment. The shift and width
were determined to be eV and
eV, respectively. The new
values will provide vital constraints on the theoretical description of the
low-energy interaction.Comment: 5 figures, submitted to Physics Letters
VIP EXPERIMENT: NEW EXPERIMENTAL LIMIT ON PAULI EXCLUSION PRINCIPLE VIOLATION BY ELECTRONS
The VIP (Violation of the Pauli Exclusion Principle) experiment is investigating one of the basic principles of modern physics, searching for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli forbidden transition. VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by three-four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10-29÷-30 region. The new experimental results, together with future plans, are presented
Measurements of the reaction of antiproton annihilation at rest at three hydrogen target densities
The proton-antiproton annihilation at rest into the final state
was measured for three different target densities: liquid hydrogen, gaseous
hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in
the liquid hydrogen target is smaller than in the low-pressure gas target. The
branching ratios of the channel were calculated on the basis of
simultaneous analysis of the three data samples. The branching ratio for
annihilation into from the protonium state turns out to be
about ten times smaller as compared to the one from the state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters
Determination of scattering lengths from measurement of atom lifetime
The DIRAC experiment at CERN has achieved a sizeable production of
atoms and has significantly improved the precision on its lifetime
determination. From a sample of 21227 atomic pairs, a 4% measurement of the
S-wave scattering length difference
has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure
The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay
Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described
The NUMEN heavy ion multidetector for a complementary approach to the neutrinoless double beta decay
Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described
- …