153 research outputs found

    Chirality in nuclear structure: An experimental view into underlying symmetries

    No full text
    The experimental information on the observed nearly degenerate bands in the N = 75 isotones, in particular 134Pr, which is considered as the best candidate for chiral bands, if critically analyzed, shows that most properties of the bands, in particular the recently measured branching ratios and lifetimes, are in clear disagreement with the interpretation of the two bands as chiral bands. For I = 14 - 18 in 134Pr, where the observed energies are almost degenerate, a value of 2.0(4) for the ratio of the transition quadrupole moments of the two bands was obtained, which implies a considerable difference in the nuclear shape associated with the two bands. The insufficiency of the near-degeneracy criterion to trace nuclear chirality is clearly emphasized

    Probing the nature of the conjectured low-spin wobbling bands in atomic nuclei

    Get PDF
    The precession of an atomic nucleus can be approximately described as wobbling motion, arising from the coupling of a rotation and a harmonic vibration. Recently, a number of wobbling bands were reported at low spin, which violate the wobbling approximation that can be valid only at high spin. In the present work, we explore the nature of the reported low-spin wobbling bands. Via a new experiment including both angular correlation and linear polarization measurements, we demonstrate that one such band in 187Au is generated by dominant single-particle excitation rather than by the excitation of a wobbling phonon. Assessing the experimental proofs and discussions to assign the reported low-spin wobbling bands, we further point out that the imperfect research paradigm used previously would lead to unreliable identification of low-spin wobbling bands

    Evidence for the Jacobi shape transition in hot 46Ti

    Full text link
    The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an experiment using a setup consisting of the combined EUROBALL IV, HECTOR and EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the predictions of the thermal shape fluctuation model shows evidence for the Jacobi shape transition in hot 46Ti. In addition to the previously found broad structure in the GDR lineshape region at 18-27 MeV caused by large deformations, the presence of a low energy component (around 10 MeV), due to the Coriolis splitting in prolate well deformed shape, has been identified for the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003, Paris; to be published in Nucl. Phys.

    In-beam spectroscopy of medium- and high-spin states in Ce 133

    Get PDF
    Medium and high-spin states in Ce133 were investigated using the Cd116(Ne22, 5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of ∼22.8 MeV and spin 93/2. Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that all observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus

    Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    Get PDF
    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O +  232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model

    Low-lying octupole isovector excitation in Nd-144

    Get PDF
    International audienceThe nature of low-lying 3− levels in Nd144 was investigated in the Nd143(n,γγ) cold neutron-capture reaction. The combination of the high neutron flux from the research reactor at the Institut Laue-Langevin and the high γ-ray detection efficiency of the EXILL setup allowed the recording of γγ coincidences. From the coincidence data precise branching ratios were extracted. Furthermore, the octagonal symmetry of the setup allowed angular-distribution measurements to determine multipole-mixing ratios. Additionally, in a second measurement the ultra-high resolution spectrometer GAMS6 was employed to conduct lifetime measurements using the gamma-ray induced Doppler-shift technique (GRID). The confirmed strong M1 component in the 33−→31− decay strongly supports the assignment of the 33− level at 2779keV as low-lying isovector octupole excitation. Microscopic calculations within the quasiparticle phonon model confirm an isovector component in the wave function of the 33− level, firmly establishing this fundamental mode of nuclear excitation in near-spherical nuclei

    Transverse wobbling in Pr 135

    Get PDF
    A pair of transverse wobbling bands is observed in the nucleus Pr135. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model

    Broken seniority symmetry in the semimagic proton mid-shell nucleus <sup>95</sup>Rh

    Get PDF
    Lifetime measurements of low-lying excited states in the semimagic ( N = 50 ) nucleus 95Rh have been performed by means of the fast-timing technique. The experiment was carried out using γ -ray detector arrays consisting of LaBr3(Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research (FAIR) Phase-0, Darmstadt, Germany. The excited states in 95Rh were populated primarily via the β decays of 95Pd nuclei, produced in the projectile fragmentation of a 850 MeV/nucleon 124Xe beam impinging on a 4 g / cm2 9Be target. The deduced electromagnetic E2 transition strengths for the γ -ray cascade within the multiplet structure depopulating from the isomeric Iπ = 21 / 2+ state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2+ → 9 / 2+ ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian
    corecore