5 research outputs found

    Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854

    Variable Clinical Presentation of an MUC1

    No full text
    BACKGROUND AND OBJECTIVES: The genetic cause of medullary cystic kidney disease type 1 was recently identified as a cytosine insertion in the variable number of tandem repeat region of MUC1 encoding mucoprotein-1 (MUC1), a protein that is present in skin, breast, and lung tissue, the gastrointestinal tract, and the distal tubules of the kidney. The purpose of this investigation was to analyze the clinical characteristics of families and individuals with this mutation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Families with autosomal dominant interstitial kidney disease were referred for genetic analysis over a 14-year period. Families without UMOD or REN mutations prospectively underwent genotyping for the presence of the MUC1 mutation. Clinical characteristics were retrospectively evaluated in individuals with the MUC1 mutation and historically affected individuals (persons who were both related to genetically affected individuals in such a way that ensured that they could be genetically affected and had a history of CKD stage IV or kidney failure resulting in death, dialysis, or transplantation). RESULTS: Twenty-four families were identified with the MUC1 mutation. Of 186 family members undergoing MUC1 mutational analysis, the mutation was identified in 95 individuals, 91 individuals did not have the mutation, and111 individuals were identified as historically affected. Individuals with the MUC1 mutation suffered from chronic kidney failure with a widely variable age of onset of end stage kidney disease ranging from 16 to >80 years. Urinalyses revealed minimal protein and no blood. Ultrasounds of 35 individuals showed no medullary cysts. There were no clinical manifestations of the MUC1 mutation detected in the breasts, skin, respiratory system, or gastrointestinal tract. CONCLUSION: MUC1 mutation results in progressive chronic kidney failure with a bland urinary sediment. The age of onset of end stage kidney disease is highly variable, suggesting that gene–gene or gene–environment interactions contribute to phenotypic variability

    Noninvasive Immunohistochemical Diagnosis and Novel MUC1 Mutations Causing Autosomal Dominant Tubulointerstitial Kidney Disease

    No full text
    Background Autosomal dominant tubulointerstitial kidney disease caused by mucin-1 gene (MUC1) mutations (ADTKD-MUC1) is characterized by progressive kidney failure. Genetic evaluation for ADTKD-MUC1 specifically tests for a cytosine duplication that creates a unique frameshift protein (MUC1fs). Our goal was to develop immunohistochemical methods to detect the MUC1fs created by the cytosine duplication and, possibly, by other similar frameshift mutations and to identify novel MUC1 mutations in individuals with positive immunohistochemical staining for the MUC1fs protein. Methods We performed MUC1fs immunostaining on urinary cell smears and various tissues from ADTKD-MUC1-positive and -negative controls as well as in individuals from 37 ADTKD families that were negative for mutations in known ADTKD genes. We used novel analytic methods to identify MUC1 frameshift mutations. Results After technique refinement, the sensitivity and specificity for MUC1fs immunostaining of urinary cell smears were 94.2% and 88.6%, respectively. Further genetic testing on 17 families with positive MUC1fs immunostaining revealed six families with five novel MUC1 frameshift mutations that all predict production of the identical MUC1fs protein. Conclusions We developed a noninvasive immunohistochemical method to detect MUC1fs that, after further validation, may be useful in the future for diagnostic testing. Production of the MUC1fs protein may be central to the pathogenesis of ADTKD-MUC1
    corecore