41 research outputs found

    Germline TERT promoter mutations are rare in familial melanoma.

    Get PDF
    Germline CDKN2A mutations occur in 40 % of 3-or-more case melanoma families while mutations of CDK4, BAP1, and genes involved in telomere function (ACD, TERF2IP, POT1), have also been implicated in melanomagenesis. Mutation of the promoter of the telomerase reverse transcriptase (TERT) gene (c.-57 T>G variant) has been reported in one family. We tested for the TERT promoter variant in 675 multicase families wild-type for the known high penetrance familial melanoma genes, 1863 UK population-based melanoma cases and 529 controls. Germline lymphocyte telomere length was estimated in carriers. The c.-57 T>G TERT promoter variant was identified in one 7-case family with multiple primaries and early age of onset (earliest, 15 years) but not among population cases or controls. One family member had multiple primary melanomas, basal cell carcinomas and a bladder tumour. The blood leukocyte telomere length of a carrier was similar to wild-type cases. We provide evidence confirming that a rare promoter variant of TERT (c.-57 T>G) is associated with high penetrance, early onset melanoma and potentially other cancers, and explains <1 % of UK melanoma multicase families. The identification of POT1 and TERT germline mutations highlights the importance of telomere integrity in melanoma biology.The authors would like to thank the families for their willingness to participate; and Rajiv Kumar for the provision of mutation positive samples. The collection of samples in the UK population-ascertained sample set was funded by Cancer Research UK (awards C588/A19167 and C8216/A6129) and by the NIH (CA83115). The work of N.A.G. and R.v.D was supported by the Dutch Cancer Society (UL 2012-5489). D.J.A and C.D.R.E are supported by Cancer Research UK, ERC Combat Cancer and the Wellcome Trust. N.K.H is supported by a fellowship from the National Health and Medical Research Council of Australia. A.M.D. and K.A.P. were supported by CRUK grant (C8197/A16565) and The Isaac Newton Trust. K.M.B. is supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics; National Cancer Institute; National Institutes of Health.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10689-015-9841-

    The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets

    Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer.

    Get PDF
    The somatic mutations in a cancer genome are the aggregate outcome of one or more mutational processes operative through the lifetime of the individual with cancer. Each mutational process leaves a characteristic mutational signature determined by the mechanisms of DNA damage and repair that constitute it. A role was recently proposed for the APOBEC family of cytidine deaminases in generating particular genome-wide mutational signatures and a signature of localized hypermutation called kataegis. A germline copy number polymorphism involving APOBEC3A and APOBEC3B, which effectively deletes APOBEC3B, has been associated with modestly increased risk of breast cancer. Here we show that breast cancers in carriers of the deletion show more mutations of the putative APOBEC-dependent genome-wide signatures than cancers in non-carriers. The results suggest that the APOBEC3A-APOBEC3B germline deletion allele confers cancer susceptibility through increased activity of APOBEC-dependent mutational processes, although the mechanism by which this increase in activity occurs remains unknown.We would like to thank the Wellcome Trust for support (grant reference 098051). SN-Z is a Wellcome-Beit Prize Fellow and is supported through a Wellcome Trust Intermediate Fellowship (grant reference WT100183MA). PJC is personally funded through a Wellcome Trust Senior Clinical Research Fellowship (grant reference WT088340MA). NB is an EHA fellow and is supported by a Lady Tata Memorial Trust award. The H.L. Holmes Award from the National Research Council Canada and an EMBO Fellowship supports AS

    The apobec mutational activity in multiple myeloma: from diagnosis to cell lines

    Get PDF
    Next generation sequencing (NGS) studies have highlighted the role of aberrant activity of APOBEC DNA deaminases in generating the mu- tational repertoire of multiple myeloma (MM). However, the contribu- tion of this mutational process across the landscape of plasma cell dyscrasias, or its prognostic role, has never been investigated in detail. To answer these unexplored aspects of MM biology, we used published NGS data from our own work as well as others, including the large CoMMpass trial for a total of 1153 whole-exomes of MM. Furthermore, we investigated 5 MGUS, 6 primary plasma cell leukemias (pPCL) and 18 MM cell lines (MMCL). Overall, we identified signatures of two mu- tational processes, one related to spontaneous deamination of methy- lated cytosines (30% of variants, range 0-100%) and one attributed to aberrant APOBEC activity (70% of variants, range 0-100%). APOBEC contribution was extremely heterogeneous among MM patients, but was correlated with a higher mutational burden (r=0.71, p=<0.0001) and with MAF gene translocations t(14;16) and t(14;20). The activity of APOBEC increased from MGUS to MM to pPCL, both in terms of ab- solute number of mutations and as percentage contribution. In MMCL we instead observed a bi-modal distribution whereby 8 cell lines showed the highest numbers of mutations caused by APOBEC (5/8 car- ried MAF translocations), while 10 where virtually devoid of APOBEC mutations (0/10 carried MAF translocations). The contribution of APOBEC to the total mutational repertoire in MM had a clear prognos- tic impact. MM patients with APOBEC mutations in the lowest quartile had a survival advantage over patients with APOBEC mutations in the highest quartile both in terms of progression-free survival (3-y PFS 46% vs 67% months, p=<0.0001) and overall survival (3-y OS 52% vs 83%, p=0.0084). This association was retained in a multivariate model that included age, gender, cytogenetic class, ISS, and quartiles of mutational load both in PFS [p=0.02, HR 2.06 (95IC 1.11-3.81] and OS [p=0.02, HR 2.88 (95IC 1.17-7.09)]. Interestingly we found that APOBEC mutations in the 4th quartile retained its independent prognostic respect to high mutational load and presence of MAF translocations. Overall, our data suggest that APOBEC-mediated mutagenesis is strongly involved in MM pathogenesis and its activity persists during different phases of evolution, playing a critical role in MM genomic complexity, and im- pacting prognosis of the patients

    Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions

    Get PDF
    Abstract: The occurrence of repetitive genomic changes that provide a selective growth advantage in pluripotent stem cells is of concern for their clinical application. However, the effect of different culture conditions on the underlying mutation rate is unknown. Here we show that the mutation rate in two human embryonic stem cell lines derived and banked for clinical application is low and not substantially affected by culture with Rho Kinase inhibitor, commonly used in their routine maintenance. However, the mutation rate is reduced by >50% in cells cultured under 5% oxygen, when we also found alterations in imprint methylation and reversible DNA hypomethylation. Mutations are evenly distributed across the chromosomes, except for a slight increase on the X-chromosome, and an elevation in intergenic regions suggesting that chromatin structure may affect mutation rate. Overall the results suggest that pluripotent stem cells are not subject to unusually high rates of genetic or epigenetic alterations

    Somatic mutations reveal asymmetric cellular dynamics in the early human embryo.

    Get PDF
    Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis

    Tissue-Biased Expansion of DNMT3A-Mutant Clones in a Mosaic Individual Is Associated with Conserved Epigenetic Erosion

    No full text
    A human germline-mosaic for WT and DNMT3A mutant cells reveals a marked advantage for DNMT3A mutant cells in the hematopoietic system compared to epithelial cells. Deep sequencing suggests a very early tissue advantage driven by DNA methylation loss at conserved loci rather than increased mutation burden
    corecore