241 research outputs found
The search for black hole binaries using a genetic algorithm
In this work we use genetic algorithm to search for the gravitational wave
signal from the inspiralling massive Black Hole binaries in the simulated LISA
data. We consider a single signal in the Gaussian instrumental noise. This is a
first step in preparation for analysis of the third round of the mock LISA data
challenge. We have extended a genetic algorithm utilizing the properties of the
signal and the detector response function. The performance of this method is
comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico
Facing the LISA Data Analysis Challenge
By being the first observatory to survey the source rich low frequency region
of the gravitational wave spectrum, the Laser Interferometer Space Antenna
(LISA) will revolutionize our understanding of the Cosmos. For the first time
we will be able to detect the gravitational radiation from millions of galactic
binaries, the coalescence of two massive black holes, and the inspirals of
compact objects into massive black holes. The signals from multiple sources in
each class, and possibly others as well, will be simultaneously present in the
data. To achieve the enormous scientific return possible with LISA,
sophisticated data analysis techniques must be developed which can mine the
complex data in an effort to isolate and characterize individual signals. This
proceedings paper very briefly summarizes the challenges associated with
analyzing the LISA data, the current state of affairs, and the necessary next
steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle
Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi
Low-frequency gravitational-wave science with eLISA/NGO
We review the expected science performance of the New Gravitational-Wave
Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space
Agency for launch in the early 2020s. eLISA will survey the low-frequency
gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a
broad variety of systems and events throughout the Universe, including the
coalescences of massive black holes brought together by galaxy mergers; the
inspirals of stellar-mass black holes and compact stars into central galactic
black holes; several millions of ultracompact binaries, both detached and mass
transferring, in the Galaxy; and possibly unforeseen sources such as the relic
gravitational-wave radiation from the early Universe. eLISA's high
signal-to-noise measurements will provide new insight into the structure and
history of the Universe, and they will test general relativity in its
strong-field dynamical regime.Comment: 20 pages, 8 figures, proceedings of the 9th Amaldi Conference on
Gravitational Waves. Final journal version. For a longer exposition of the
eLISA science case, see http://arxiv.org/abs/1201.362
Inference of the cosmological parameters from gravitational waves: application to second generation interferometers
The advanced world-wide network of gravitational waves (GW) observatories is
scheduled to begin operations within the current decade. Thanks to their
improved sensitivity, they promise to yield a number of detections and thus to
open a new observational windows for astronomy and astrophysics. Among the
scientific goals that should be achieved, there is the independent measurement
of the value of the cosmological parameters, hence an independent test of the
current cosmological paradigm. Due to the importance of such task, a number of
studies have evaluated the capabilities of GW telescopes in this respect.
However, since GW do not yield information about the source redshift, different
groups have made different assumptions regarding the means through which the GW
redshift can be obtained. These different assumptions imply also different
methodologies to solve this inference problem. This work presents a formalism
based on Bayesian inference developed to facilitate the inclusion of all
assumptions and prior information about a GW source within a single data
analysis framework. This approach guarantees the minimisation of information
loss and the possibility of including naturally event-specific knowledge (such
as the sky position for a Gamma Ray Burst - GW coincident observation) in the
analysis. The workings of the method are applied to a specific example, loosely
designed along the lines of the method proposed by Schutz in 1986, in which one
uses information from wide-field galaxy surveys as prior information for the
location of a GW source. I show that combining the results from few tens of
observations from a network of advanced interferometers will constrain the
Hubble constant to an accuracy of % at 95% confidence.Comment: 13 pages, 25 figures. Accepted for publication in Phys. Rev.
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
The scientific potential of space-based gravitational wave detectors
The millihertz gravitational wave band can only be accessed with a
space-based interferometer, but it is one of the richest in potential sources.
Observations in this band have amazing scientific potential. The mergers
between massive black holes with mass in the range 10 thousand to 10 million
solar masses, which are expected to occur following the mergers of their host
galaxies, produce strong millihertz gravitational radiation. Observations of
these systems will trace the hierarchical assembly of structure in the Universe
in a mass range that is very difficult to probe electromagnetically. Stellar
mass compact objects falling into such black holes in the centres of galaxies
generate detectable gravitational radiation for several years prior to the
final plunge and merger with the central black hole. Measurements of these
systems offer an unprecedented opportunity to probe the predictions of general
relativity in the strong-field and dynamical regime. Millihertz gravitational
waves are also generated by millions of ultra-compact binaries in the Milky
Way, providing a new way to probe galactic stellar populations. ESA has
recognised this great scientific potential by selecting The Gravitational
Universe as its theme for the L3 large satellite mission, scheduled for launch
in ~2034. In this article we will review the likely sources for millihertz
gravitational wave detectors and describe the wide applications that
observations of these sources could have for astrophysics, cosmology and
fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics,
the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one
additional referenc
The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the
noise present in the individual pulsar timing data. Noise may be either
intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include
rotational instabilities, for example. Extrinsic sources of noise include
contributions from physical processes which are not sufficiently well modelled,
for example, dispersion and scattering effects, analysis errors and
instrumental instabilities. We present the results from a noise analysis for 42
millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For
characterising the low-frequency, stochastic and achromatic noise component, or
"timing noise", we employ two methods, based on Bayesian and frequentist
statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent
results. For the remaining 17 MSPs, we place upper limits on the timing noise
amplitude at the 95% confidence level. We additionally place an upper limit on
the contribution to the pulsar noise budget from errors in the reference
terrestrial time standards (below 1%), and we find evidence for a noise
component which is present only in the data of one of the four used telescopes.
Finally, we estimate that the timing noise of individual pulsars reduces the
sensitivity of this data set to an isotropic, stochastic GW background by a
factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable,
inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal
Astronomical Societ
Report on the first round of the Mock LISA Data Challenges
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the
development of LISA data analysis tools and capabilities, and demonstrating the
technical readiness already achieved by the gravitational-wave community in
distilling a rich science payoff from the LISA data output. The first round of
MLDCs has just been completed: nine data sets containing simulated
gravitational wave signals produced either by galactic binaries or massive
black hole binaries embedded in simulated LISA instrumental noise were released
in June 2006 with deadline for submission of results at the beginning of
December 2006. Ten groups have participated in this first round of challenges.
Here we describe the challenges, summarise the results, and provide a first
critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference,
clarified some text, removed typos. Results unchanged; Removed author, minor
edits, reflects submitted versio
A strategy to characterize the LISA-Pathfinder cold gas thruster system
The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system
- …