3,899 research outputs found

    Simulated CII observations for SPICA/SAFARI

    Full text link
    We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the CII 158 micron line and provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies" (July 2009, Oxford, United Kingdom

    HerschelHerschel SPIRE-FTS observations of RCW 120

    Full text link
    The expansion of Galactic HII regions can trigger the formation of a new generation of stars. However, little is know about the physical conditions that prevail in these regions. We study the physical conditions that prevail in specific zones towards expanding HII regions that trace representative media such as the photodissociation region, the ionized region, and condensations with and without ongoing star formation. We use the SPIRE Fourier Transform Spectrometer (FTS) on board HerschelHerschel to observe the HII region RCW 120. Continuum and lines are observed in the 190670μ190-670\,\mum range. Line intensities and line ratios are obtained and used as physical diagnostics of the gas. We used the Meudon PDR code and the RADEX code to derive the gas density and the radiation field at nine distinct positions including the PDR surface and regions with and without star-formation activity. For the different regions we detect the atomic lines [NII] at 205μ205\,\mum and [CI] at 370370 and 609μ609\,\mum, the 12CO^{12}{\rm CO} ladder between the J=4J=4 and J=13J=13 levels and the 13CO^{13}{\rm CO} ladder between the J=5J=5 and J=14J=14 levels, as well as CH+ ^{+} in absorption. We find gas temperatures in the range 4525045-250\,K for densities of 104106cm310^4-10^6\,{\rm cm}^{-3}, and a high column density on the order of NH1022cm2N_{{\rm H}}\sim10^{22}\,{\rm cm}^{-2} that is in agreement with dust analysis. The ubiquitousness of the atomic and CH+ ^{+} emission suggests the presence of a low-density PDR throughout RCW 120. High-excitation lines of CO indicate the presence of irradiated dense structures or small dense clumps containing young stellar objects, while we also find a less dense medium (NH1020cm2N_{{\rm H}}\sim10^{20}\,{\rm cm}^{-2}) with high temperatures (8020080-200\,K).Comment: 11 pages, 11 figures, accepted by A&

    Incorporation of stochastic chemistry on dust grains in the PDR code using moment equations

    Full text link
    Unlike gas-phase reactions, chemical reactions taking place on interstellar dust grain surfaces cannot always be modeled by rate equations. Due to the small grain sizes and low flux,these reactions may exhibit large fluctuations and thus require stochastic methods such as the moment equations. We evaluate the formation rates of H2, HD and D2 molecules on dust grain surfaces and their abundances in the gas phase under interstellar conditions. We incorporate the moment equations into the Meudon PDR code and compare the results with those obtained from the rate equations. We find that within the experimental constraints on the energy barriers for diffusion and desorption and for the density of adsorption sites on the grain surface, H2, HD and D2 molecules can be formed efficiently on dust grains. Under a broad range of conditions, the moment equation results coincide with those obtained from the rate equations. However, in a range of relatively high grain temperatures, there are significant deviations. In this range, the rate equations fail while the moment equations provide accurate results. The incorporation of the moment equations into the PDR code can be extended to other reactions taking place on grain surfaces

    The IRAM-30m line survey of the Horsehead PDR: IV. Comparative chemistry of H2CO and CH3OH

    Full text link
    Aims. We investigate the dominant formation mechanism of H2CO and CH3OH in the Horsehead PDR and its associated dense core. Methods. We performed deep integrations of several H2CO and CH3OH lines at two positions in the Horsehead, namely the PDR and dense core, with the IRAM-30m telescope. In addition, we observed one H2CO higher frequency line with the CSO telescope at both positions. We determine the H2CO and CH3OH column densities and abundances from the single-dish observations complemented with IRAM-PdBI high-angular resolution maps (6") of both species. We compare the observed abundances with PDR models including either pure gas-phase chemistry or both gas-phase and grain surface chemistry. Results. We derive CH3OH abundances relative to total number of hydrogen atoms of ~1.2e-10 and ~2.3e-10 in the PDR and dense core positions, respectively. These abundances are similar to the inferred H2CO abundance in both positions (~2e-10). We find an abundance ratio H2CO/CH3OH of ~2 in the PDR and ~1 in the dense core. Pure gas-phase models cannot reproduce the observed abundances of either H2CO or CH3OH at the PDR position. Both species are therefore formed on the surface of dust grains and are subsequently photodesorbed into the gas-phase at this position. At the dense core, on the other hand, photodesorption of ices is needed to explain the observed abundance of CH3OH, while a pure gas-phase model can reproduce the observed H2CO abundance. The high-resolution observations show that CH3OH is depleted onto grains at the dense core. CH3OH is thus present in an envelope around this position, while H2CO is present in both the envelope and the dense core itself. Conclusions. Photodesorption is an efficient mechanism to release complex molecules in low FUV-illuminated PDRs, where thermal desorption of ice mantles is ineffective.Comment: 12 pages, 5 tables, 7 figures; Accepted for publication in A&

    The IRAM-30m line survey of the Horsehead PDR: II. First detection of the l-C3H+ hydrocarbon cation

    Get PDF
    We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed a consistent set of eight unidentified lines toward the PDR position. Six of them are detected with a signal-to-noise ratio from 6 to 19, while the two last ones are tentatively detected. Mostly noise appears at the same frequency toward the dense core, located less than 40" away. We simultaneously fit 1) the rotational and centrifugal distortion constants of a linear rotor, and 2) the Gaussian line shapes located at the eight predicted frequencies. The observed lines can be accurately fitted with a linear rotor model, implying a 1Sigma ground electronic state. The deduced rotational constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to constrain the chemistry of small hydrocarbons. A rotational diagram is then used to infer the excitation temperature and the column density. We finally compare the abundance to the results of the Meudon PDR photochemical model.Comment: 9 pages, 7 PostScript figures. Accepted for publication in Astronomy \& Astrophysics. Uses aa LaTeX macro

    A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    Full text link
    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\nu <13.6 eV). We present Herschel observations of far-infrared fine-structure lines obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines from Herschel and Spitzer observations with ground-based CO data to provide diagnostics on the properties and the structure of the gas by modeling it with the Meudon PDR code. We derive the spatial distribution of the radiation field, the pressure, the size, and the filling factor of the photodissociated gas and molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR modeling. Assuming a plane-parallel geometry and a uniform medium, we find a total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to 3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&

    A far UV study of interstellar gas towards HD34078: high excitation H2 and small scale structure - Based on observations performed by the FUSE mission and at the CFHT telescope

    Full text link
    To investigate the presence of small scale structure in the spatial distribution of H2 molecules we have undertaken repeated FUSE UV observations of the runaway O9.5V star, HD34078. In this paper we present five spectra obtained between January 2000 and October 2002. These observations reveal an unexpectedly large amount of highly excited H2. Column densities for H2 levels from (v = 0, J = 0) up to (v = 0, J = 11) and for several v = 1 and v = 2 levels are determined. These results are interpreted in the frame of a model involving essentially two components: i) a foreground cloud (unaffected by HD34078) responsible for the H2 (J = 0, 1), CI, CH, CH+ and CO absorptions; ii) a dense layer of gas (n = 10E4 cm-3) close to the O star and strongly illuminated by its UV flux which accounts for the presence of highly excited H2. Our model successfully reproduces the H2 excitation, the CI fine-structure level populations as well as the CH, CH+ and CO column densities. We also examine the time variability of H2 absorption lines tracing each of these two components. From the stability of the J = 0, 1 and 2 damped H2 profiles we infer a 3 sigma upper limit on column density variations Delta(N(H2))/N(H2) of 5% over scales ranging from 5 to 50 AU. This result clearly rules out any pronounced ubiquitous small scale "density" structure of the kind apparently seen in HI. The lines from highly excited gas are also quite stable (equivalent to Delta(N)/N <= 30%) indicating i) that the ambient gas through which HD34078 is moving is relatively uniform and ii) that the gas flow along the shocked layer is not subject to marked instabilitie

    The Atomic-to-Molecular Transition in Galaxies. III. A New Method for Determining the Molecular Content of Primordial and Dusty Clouds

    Full text link
    Understanding the molecular content of galaxies is a critical problem in star formation and galactic evolution. Here we present a new method, based on a Stromgren-type analysis, to calculate the amount of HI that surrounds a molecular cloud irradiated by an isotropic radiation field. We consider both planar and spherical clouds, and H_2 formation either in the gas phase or catalyzed by dust grains. Under the assumption that the transition from atomic to molecular gas is sharp, our method gives the solution without any reference to the photodissociation cross section. We test our results for the planar case against those of a PDR code, and find typical accuracies of about 10%. Our results are also consistent with the scaling relations found in Paper I of this series, but they apply to a wider range of physical conditions. We present simple, accurate analytic fits to our results that are suitable for comparison to observations and to implementation in numerical and semi-analytic models.Comment: 14 pages, 5 figures, accepted to Ap

    Sensitivity analyses of dense cloud chemical models

    Full text link
    Because of new telescopes that will dramatically improve our knowledge of the interstellar medium, chemical models will have to be used to simulate the chemistry of many regions with diverse properties. To make these models more robust, it is important to understand their sensitivity to a variety of parameters. In this article, we report a study of the sensitivity of a chemical model of a cold dense core, with homogeneous and time-independent physical conditions, to variations in the following parameters: initial chemical inventory, gas temperature and density, cosmic-ray ionization rate, chemical reaction rate coefficients, and elemental abundances. From the results of the parameter variations, we can quantify the sensitivity of the model to each parameter as a function of time. Our results can be used in principle with observations to constrain some parameters for different cold clouds. We also attempted to use the Monte Carlo approach with all parameters varied collectively. Within the parameter ranges studied, the most critical parameters turn out to be the reaction rate coefficients at times up to 4e5 yr and elemental abundances at later times. At typical times of best agreement with observation, models are sensitive to both of these parameters. The models are less sensitive to other parameters such as the gas density and temperature. The improvement of models will require that the uncertainties in rate coefficients of important reactions be reduced. As the chemistry becomes better understood and more robust, it should be possible to use model sensitivities concerning other parameters, such as the elemental abundances and the cosmic ray ionization rate, to yield detailed information on cloud properties and history. Nevertheless, at the current stage, we cannot determine the best values of all the parameters simultaneously based on purely observational constraints.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore