2,162 research outputs found
Preseason Lower Extremity Functional Test Scores Are Not Associated With Lower Quadrant Injury - A Validation Study With Normative Data on 395 Division III Athletes
Background: Preseason performance on the lower extremity functional test (LEFT), a timed series of agility drills, has been previously reported to be associated with future risk of lower quadrant (LQ = low back and lower extremities) injury in Division III (D III) athletes.Validation studies are warranted to confirm or refute initial findings.
Hypothesis/Purpose: The primary purpose of this study was to examine the ability of the LEFT to discriminate injury occurrence in D III athletes, in order to validate or refute prior findings. It was hypothesized that female and male D III athletes slower at completion of the LEFT would be at a greater risk for a non-contact time-loss injury during sport. Secondary purposes of this study are to report other potential risk factors based on athlete demographics and to present normative LEFT data based on sport participation.
Methods: Two hundred and six (females = 104; males = 102) D III collegiate athletes formed a validation sample. Athletes in the validation sample completed a demographic questionnaire and performed the LEFT at the start of their sports preseason. Athletic trainers tracked non-contact time-loss LQ injuries during the season. A secondary analysis of risk based on preseason LEFT performance was conducted for a sample (n = 395) that consisted of subjects in the validation sample (n = 206) as well as athletes from a prior LEFT related study (n = 189).
Study Design: Prospective cohort
Results: Male athletes in the validation sample completed the LEFT [98.6 (± 8.1) seconds] significantly faster than female athletes [113.1 (± 10.4) seconds]. Male athletes, by sport, also completed the LEFT significantly faster than their female counterparts who participated in the same sport. There was no association between preseason LEFT performance and subsequent injury, by sex, in either the validation sample or the combined sample. Females who reported starting primary sport participation by age 10 were two times (OR = 2.4, 95% CI: 1.2, 4.9; p = 0.01) more likely to experience a non-contact time-loss LQ injury than female athletes who started their primary sport at age 11 or older. Males who reported greater than three hours per week of plyometric training during the six-week period prior to the start of the preseason were four times more likely (OR = 4.0, 95% CI: 1.1, 14.0; p = 0.03) to experience a foot or ankle injury than male athletes who performed three or less hours per week.
Conclusions: The LEFT could not be validated as a preseason performance measure to predict future sports injury risk. The data presented in this study may aid rehabilitation professionals when evaluating an injured athlete’s ability to return to sport by comparing their LEFT score to population norms
Are Preseason Functional and Biomechanical Measures Associated with Lower Quadrant Injury Risk in Division III Athletes?
A recent trend in sports medicine research is to determine risk of injury during sport based on preseason functional performance test (FPT) measures.
Equivocal findings associated with prior studies may leave PTs with uncertainty as to which FPT, or combination of FPTs, can best identify athletes who have a greater risk for injury.
Previous studies have utilized low-tech FPT measures: standing long jump (SLJ), single-leg hop (SLH), lower extremity functional test (LEFT), and the Y-balance test (YBT) (1,3,4).
These low-tech options may not be able to identify potential deficits that could be collected with high-tech measures (e.g., DVJ measures collected in a motion capture lab) (2).
The purpose of this study was to determine if “high-tech” and/or “low-tech” preseason functional performance test measures were associated with non-contact time loss lower quadrant (LQ = low back and/or lower extremity) injuries
Specialized late cingulo-opercular network activation elucidates the mechanisms underlying decisions about ambiguity
Cortical task control networks, including the cingulo-opercular (CO) network play a key role in decision-making across a variety of functional domains. In particular, the CO network functions in a performance reporting capacity that supports successful task performance, especially in response to errors and ambiguity. In two studies testing the contribution of the CO network to ambiguity processing, we presented a valence bias task in which masked clearly and ambiguously valenced emotional expressions were slowly revealed over several seconds. This slow reveal task design provides a window into the decision-making mechanisms as they unfold over the course of a trial. In the main study, the slow reveal task was administered to 32 young adults in the fMRI environment and BOLD time courses were extracted from regions of interest in three control networks. In a follow-up study, the task was administered to a larger, online sample (n = 81) using a more extended slow reveal design with additional unmasking frames. Positive judgments of surprised faces were uniquely accompanied by slower response times and strong, late activation in the CO network. These results support the initial negativity hypothesis, which posits that the default response to ambiguity is negative and positive judgments are associated with a more effortful controlled process, and additionally suggest that this controlled process is mediated by the CO network. Moreover, ambiguous trials were characterized by a second CO response at the end of the trial, firmly placing CO function late in the decision-making process
Specialized late cingulo-opercular network activation elucidates the mechanisms underlying decisions about ambiguity
Cortical task control networks, including the cingulo-opercular (CO) network play a key role in decision-making across a variety of functional domains. In particular, the CO network functions in a performance reporting capacity that supports successful task performance, especially in response to errors and ambiguity. In two studies testing the contribution of the CO network to ambiguity processing, we presented a valence bias task in which masked clearly and ambiguously valenced emotional expressions were slowly revealed over several seconds. This slow reveal task design provides a window into the decision-making mechanisms as they unfold over the course of a trial. In the main study, the slow reveal task was administered to 32 young adults in the fMRI environment and BOLD time courses were extracted from regions of interest in three control networks. In a follow-up study, the task was administered to a larger, online sample (n = 81) using a more extended slow reveal design with additional unmasking frames. Positive judgments of surprised faces were uniquely accompanied by slower response times and strong, late activation in the CO network. These results support the initial negativity hypothesis, which posits that the default response to ambiguity is negative and positive judgments are associated with a more effortful controlled process, and additionally suggest that this controlled process is mediated by the CO network. Moreover, ambiguous trials were characterized by a second CO response at the end of the trial, firmly placing CO function late in the decision-making process
Monitoring Intense Thunderstorms in the Hindu-Kush Himalayan Region
Some of the most extreme thunderstorms on the planet routinely occur in the Hindu-Kush Himalaya (HKH) region where many government organizations lack the resources needed to fully assess the risk associated with hazards that result from high impact convective weather. This project combines innovative numerical weather prediction, satellite-based precipitation and land imagery techniques into a high impact weather assessment tool kit (HIWAT) that is building the capabilities of national meteorological departments and other weather sensitive agencies in the HKH region to predict, observe and effectively respond to threats and impacts posed by thunderstorms that affect the region, thereby enhancing extreme weather resilience in the region
Optimising use of electronic health records to describe the presentation of rheumatoid arthritis in primary care: a strategy for developing code lists
Background
Research using electronic health records (EHRs) relies heavily on coded clinical data. Due to variation in coding practices, it can be difficult to aggregate the codes for a condition in order to define cases. This paper describes a methodology to develop ‘indicator markers’ found in patients with early rheumatoid arthritis (RA); these are a broader range of codes which may allow a probabilistic case definition to use in cases where no diagnostic code is yet recorded.
Methods
We examined EHRs of 5,843 patients in the General Practice Research Database, aged ≥30y, with a first coded diagnosis of RA between 2005 and 2008. Lists of indicator markers for RA were developed initially by panels of clinicians drawing up code-lists and then modified based on scrutiny of available data. The prevalence of indicator markers, and their temporal relationship to RA codes, was examined in patients from 3y before to 14d after recorded RA diagnosis.
Findings
Indicator markers were common throughout EHRs of RA patients, with 83.5% having 2 or more markers. 34% of patients received a disease-specific prescription before RA was coded; 42% had a referral to rheumatology, and 63% had a test for rheumatoid factor. 65% had at least one joint symptom or sign recorded and in 44% this was at least 6-months before recorded RA diagnosis.
Conclusion
Indicator markers of RA may be valuable for case definition in cases which do not yet have a diagnostic code. The clinical diagnosis of RA is likely to occur some months before it is coded, shown by markers frequently occurring ≥6 months before recorded diagnosis. It is difficult to differentiate delay in diagnosis from delay in recording. Information concealed in free text may be required for the accurate identification of patients and to assess the quality of care in general practice
FASER: ForwArd Search ExpeRiment at the LHC
FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to
searching for light, extremely weakly-interacting particles at the LHC. Such
particles may be produced in the LHC's high-energy collisions in large numbers
in the far-forward region and then travel long distances through concrete and
rock without interacting. They may then decay to visible particles in FASER,
which is placed 480 m downstream of the ATLAS interaction point. In this work,
we describe the FASER program. In its first stage, FASER is an extremely
compact and inexpensive detector, sensitive to decays in a cylindrical region
of radius R = 10 cm and length L = 1.5 m. FASER is planned to be constructed
and installed in Long Shutdown 2 and will collect data during Run 3 of the 14
TeV LHC from 2021-23. If FASER is successful, FASER 2, a much larger successor
with roughly R ~ 1 m and L ~ 5 m, could be constructed in Long Shutdown 3 and
collect data during the HL-LHC era from 2026-35. FASER and FASER 2 have the
potential to discover dark photons, dark Higgs bosons, heavy neutral leptons,
axion-like particles, and many other long-lived particles, as well as provide
new information about neutrinos, with potentially far-ranging implications for
particle physics and cosmology. We describe the current status, anticipated
challenges, and discovery prospects of the FASER program.Comment: 13 pages, 4 figures, submitted as Input to the European Particle
Physics Strategy Update 2018-2020 and draws on FASER's Letter of Intent,
Technical Proposal, and physics case documents (arXiv:1811.10243,
arXiv:1812.09139, and arXiv:1811.12522
Forecasting and Monitoring Intense Thunderstorms in the Hindu-Kush Himalayan Region
No abstract availabl
- …