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Abstract

In this paper we present an empirical Bayesian framework for inde-
pendent component analysis. The framework provides estimates of the
sources, the mixing matrix and the noise parameters, and is flexible with
respect to choice of source prior and the number of sources and sensors.
Inside the engine of the method are two mean field techniques – the vari-
ational Bayes and the expectation consistent framework – and the cost
function relating to these methods are optimized using the adaptive over-
relaxed expectation maximization (EM) algorithm and the easy gradient
recipe. The entire framework, implemented in a Matlab toolbox, is demon-
strated for non-negative decompositions and compared with non-negative
matrix factorization.
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1 Introduction

The impact of Bayesian techniques in machine learning over the last ten to
twenty years can hardly be overestimated. This is largely due to the fact that the
Bayesian approach is offering a structured and well-founded way of dealing with
uncertainty. In machine learning, there is almost no algorithm without unknown
variables and parameters to be estimated, and the Bayesian approach shows
a way to handle this lack of knowledge which is intuitive and mathematically
sound. One can, with the use of priors, even scale the uncertainty from complete
ignorance with uniform or non-informative priors to certain knowledge with
delta functions. Together with the link between priors and posteriors provided
by Bayes theorem, the overall applicability of the Bayesian framework is indeed
impressive and appealing.

The only downside of the Bayesian approach is the ever present integrals.
These are needed for computing marginal distributions, posterior averages of
the variables and marginal likelihoods. The concept of integrating out what we
do not know is appealing in almost any way, for example in model selection and
prediction, but is leaving us with one of the challenges which is still very hard in
mathematics: To compute an integral over a general function expression. This
is obviously a very general problem and over the years, researchers in many
parts of science, statistics and mathematics have proposed solutions of different
kinds.

In condensed matter/statistical physics, integrals equivalent to those of the
Bayesian approach show up when computing properties of magnetic materials,
and all through the twentieth century, many techniques and approximations
have been developed. One family of techniques is the mean field methods in
which the often very complicated interaction in systems with many variables
is dealt with by exchanging these with a simplified (mean) influence from the
other random variables. In some special cases specific mean field methods can
solve the problem exactly (limit of infinite system size, Gaussian distributions,
specific topologies of the problem for example trees). More importantly, in
many other cases it will provide sensible approximations. Keeping a long story
short, mean field techniques are approximating the very complicated integrals
with fix-point solutions of non-linear equations – and for some systems, it works
very well indeed. In the Bayesian context this means that the integrals can be
substituted with fix-point equations of non-linear functions.

When applying a Bayesian approach to the blind source separation technique
Independent Component Analysis (ICA), it is natural to integrate out at least
the extensive variables, i.e. the variables which scale directly with the size of the
observed data set. As presented in early work such as Refs. [2, 12], this leads to
equations and parameters most easily solved by the expectation maximization
(EM) algorithm. But these approaches all need to find the source statistics in
some way or another. In [2], the source prior is sufficiently discrete to make
exhaustive computations possible while in [12] the challenge is overcome by the
use of Gaussian mixtures as source prior, which given Gaussian noise, can be
integrated analytically. But these methods only work when the dimensionality
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is sufficiently small and more advanced source priors are of interest and therefore
techniques of finding the source statistics for these priors are relevant. One could
resort to techniques like Monte Carlo sampling, but although these can provide
more accurate inferences than mean field methods, it typically requires some
order magnitude more computations to reach that point. So in the line of work
presented here, the mean field techniques are lending themselves as a handy
and efficient methodology. Some of the first ICA algorithm using mean field
techniques to determine the source statistics are Refs. [11, 5], presenting good
results with rather complicated source priors. The straight forward mean field
approach to the problem – sometimes referred to as variational Bayes or naive
mean field – is approximating the source posterior by a completely factorized
distribution q(s) for the source vector s. Because of the factorization, the second
moments are trivial products 〈sisj〉q = 〈si〉q〈sj〉q for i 6= j, which is an obvious
inadequacy. More advanced techniques such as linear response is making the
covariance matrix estimate more rich [5], but is then no longer related any cost
function and not consistent with the factorized model on the diagonal 〈s2

i 〉q as
one might wish. The expectation consistency (EC) approach is achieving both
the richer structure and the consistency between the factorized distribution and
covariance estimate.

As demonstrated in numerous papers, the EM algorithm is in certain cases
extremely inefficient. In fact, for ICA, the EM algorithm effectively stands still
in the low noise limit [3, 17]. Therefore different optimization variants have
been considered such as the adaptive overrelaxed EM [19] and the easy gradient
recipe with a quasi-newton optimizer [13]. These modifications have sped up
the convergence with orders of magnitude compared to our original work [5].

In this paper we give a brief overview of the method with the variants of
the source statistics estimation and optimization of the hyper parameters. The
complete method is available as an easy-to-use Matlab toolbox and we apply the
framework to non-negative decomposition of simple images (hand-written ‘3’s
[11]) comparing the Bayesian approach with non-negative matrix factorization
[7, 8].

The paper is organized as follows: In section 2 we present the empirical Bayes
approach to the ICA model. Section 3 describes the the two marginal likelihood
approximations: the lower bound of variational Bayes and the approximation of
the expectation consistent framework. In section 4 the corresponding approxi-
mations to the source statistics are derived. Section 5 sheds some light on the
necessary improvements of the optimization procedure. In section 6 we consider
non-negative matrix factorizations as a special case of the framework and com-
pare with non-negative matrix factorization. Section 7 gives simulation results
for decompositions of hand-written digits and section 8 is the conclusion.

2 Instantaneous ICA

In this section, we give a quick recap of the empirical Bayes approach to in-
stantaneous ICA with additive Gaussian noise – for a more detailed account the
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reader is referred to e.g. [5]. The observation model is given by

xt = Ast + nt, t = 1, ..., N (1)

with N being the number of samples and we let d denote the dimensionality of
the data and M the number of sources, i.e. A is d×M . The noise is assumed
zero-mean Gaussian with covariance Σ, i.e. the likelihood is p(xt|A, st,Σ) =
N (xt; Ast,Σ). The source prior factorizes in both sources and time steps. De-
noting the stacked sources by the matrix S, we can write the prior as p(S|ν) =∏
it pi(Sit|νi), where ν is shorthand for the parameters of the prior. The ob-

servation vectors xt are stacked as columns into one matrix X: p(X|A,S,Σ) =∏
t p(xt|A, st,Σ) and the posterior is given by p(S|X,θ) = p(X|A,S,Σ)p(S|ν)

p(X|θ) ,
where we have used the shorthand θ = {A,Σ,ν} for the parameters. In the
empirical Bayes (or maximum likelihood II) approach applied to ICA, the noise
realization and the unobserved sources are integrated out, leaving the parame-
ters θ to be determined by maximizing the marginal likelihood:

p(X|θ) =
∏
t

p(xt|θ) (2)

p(xt|θ) =
∫
p(xt|A, st,Σ)p(st|ν)dst . (3)

When we are doing model selection/averaging we need to compensate for the
fact that we have maximized over parameters by penalizing complex models.
The Bayesian information criterion (BIC) is an asymptotic expansion for the
log of the likelihood marginalized over all parameters:

BIC = L(θ̂)− |θ|
2

logN ,

where L(θ̂) = ln p(X|θ̂) is the maximum value of the log marginal likelihood
and |θ| is the number of parameters we estimate by maximum likelihood, e.g.
the number of free parameters in A, Σ and ν. Alternatively, one may use
a hierarchical Bayesian approach [1] marginalizing also over θ, see [11] for an
application to ICA.

3 Approximating the Marginal Likelihood

The log marginal likelihood L(θ) = ln p(X|θ) is for most priors of interest
(e.g. heavy tailed) not tractable. Here tractable means that the computational
complexity is polynomial. Besides for low dimensional cases we therefore have
to resort to deterministic mean field or non-deterministic Monte Carlo methods.
In this paper we will present two deterministic approaches, variational Bayes
and the expectation consistent approximation.

In the celebrated variational (Bayes) approach [6, 1] a lower bound is used
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as objective function. The lower bound B is defined by

L(θ) ≡ ln p(X|θ) = ln
∫
q(S|φ)

p(X,S|θ)
q(S|φ)

dS

≥
∫
q(S|φ) ln

p(X,S|θ)
q(S|φ)

dS ≡ B(θ,φ) . (4)

The bounding property is a simple consequence of Jensen’s inequality and holds
for any choice of variational distribution q(S|φ). In fact it is easy to show that
L(θ) = B(θ,φ) + KL(q, p), where KL(q, p) ≥ 0 denotes the Kullback-Leibler
divergence between the variational distribution and the source posterior. Thus,
if the variational distribution becomes equal to the source posterior, KL(p, p) =
0 and the bound is equal to the log likelihood. To get tractability, however, a
specific factorization of the variational distribution is selected and then the
bound, eq. (4) is maximized with respect to q in this approximating family.

In the expectation consistent approach [16], one is not aiming at bounding
the marginal likelihood but rather approximating it, i.e. we give up the nice
bounding property of the variational approximation and instead get an approx-
imation which in general will be more precise than the bound. Here we state
the results which will be derived below. For the ICA model the approximation
is based upon a factorization in three terms for the prior, the likelihood and one
compensating for double counting

A(θ,φ) =
∑
t

At(θ,φt) (5)

At(θ,φt) = ln
∫
u∗(st;λq,t)p(st|ν)dst + ln

∫
u∗(st;λr,t)p(xt|A, st,Σ)dst

− ln
∫
u∗(st;λq,t + λr,t)dst , (6)

where

u∗(s;λ) = exp(λTg(s)) (7)

is an unnormalized distribution in the exponential family: The idea here is that
in each term, the parameters φ = {λq,λr} are set such that they compensate for
the terms omitted. As we shall see in the following the parameters are derived
from the stationarity condition: ∂A(θ,φ)

∂λq
= ∂A(θ,φ)

∂λr
= 0.

Next we will give a detailed derivation of how to estimate the approximat-
ing distribution entering in the two frameworks and after that we will make a
number of general observations about how to optimize hyperparameters with
empirical Bayes using not the exact log marginal likelihood but rather the bound
B or the approximation A.

4 Approximating Source Statistics

Since we are looking at instantaneous ICA we are dealing with N independent
inference problems for the sources (given the hyperparameters). In the following
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derivation we will looking at the sources for one time instance s = st. The joint
distributions for example q(S) is simply a product: q(S) =

∏
t qt(st).

4.1 Variational

The variational approximation can be motivated by the need to find a tractable
expression for the bound function eq. (4). A popular choice that gives tractable
inference for a wide range of different independent priors (e.g. discrete, mix-
ture of Gaussians, exponential, Laplace, etc.) is a fully factorized one, q(s) =∏
i qi(si). An alternative is a multivariate Gaussian q, which is tractable for

example for hierarchical models with the source prior (conditioned on latent
variables) itself being multivariate Gaussian.

We obtain the optimal q (in the factorized family) by setting the functional
derivative δB/δqi equal to zero (the so-called freeform derivation) [6]. The well
known general solution is

qi(si|φi) =
1
c

exp
[〈ln p(xt, st|θ)〉q\qi

]
, (8)

where 〈. . .〉q\qi =
∫ ∏

i′ 6=i dsi′qi′(si′) . . . denotes an average over the variational
distribution excluding qi(si). The generic solution for the ICA model becomes
proportional to the source prior times a univariate Gaussian:

qi(si|φi) =
1
Zq
pi(si|ν) exp(λTq g(si)) (9)

where the exponential form contains first and second contribution g(s) = (s,− s22 )
and the parameters are denoted by λ = (γ,Λ). Generalizing this problem to
all M × N sources we introduce Λ (a vector of length M) and γ (a M × N
dimensional matrix):

Λ = diag(ATΣ−1A) (10)
γ = ATΣ−1X− (ATΣ−1A− diag(Λ) )〈S〉q . (11)

Here we have use diag to denote the (Matlab-like) operation of turning a the
diagonal of matrix into a vector and turning a vector into a diagonal matrix.
Note how this elegantly both provides us with the structural form of q by eq.
(9) and the optimal values of the parametrization by equations for Λ and γ.
Note also, however, that the expression for γ depends on the variational mean
value and the equations therefore are not closed. Using eq. (9) as a sequential
update for q(S) is the coordinate ascent algorithm for the factorized variational
distribution and thus guaranteed to converge to a (local) optimum. The suffi-
cient statistics for the variational distribution are the means because they are
the only statistics necessary to determine the parameters γ and Λ. We thus
write the update equations for the variational distribution in terms of the mean
function:

〈sit〉q = mq,i(γ,Λ) =
1

Zq,i(γ,Λ)

∫
dsi si pi(si) exp(γsi − 1

2
Λs2

i ) . (12)
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We have thus reduced the M dimensional intractable integral (or sum for dis-
crete source priors) to a set of M non-linear equations that we can solve with
guarantee plus M one-dimensional integrals which for a large and relevant set
of source priors, the mean function mq,i have nice closed-form expressions. The
function mq,i is described for a variety of priors in [5] including binary, uniform,
exponential (non-negative), Laplace (bi-exponential) and Gaussian.

A consequence of using the factorized variational distribution is that we
will make trivial predictions for the non-diagonal second moments: 〈sisi′〉q =
〈si〉q〈si′〉q for i 6= i′. Although these correlations do not appear in the varia-
tional updates they will play an important and sometimes crucial role parameter
estimation [20]. Fortunately, the linear response correction [5] and expectation
consistent (EC) framework [16] give non-trivial estimates of correlations. There
are two reasons why we in the following will concentrate on EC: There is no
well defined cost function (marginal likelihood estimate) associated with linear
response. Secondly, an empirical comparison in Ref. [20] shows that EC gives
more precise results both in estimating source moments and in solving the ICA
problem.

4.2 Expectation Consistent Framework

The basic idea behind the expectation consistent (EC) framework [16, 14, 15]
is to use more than one variational distribution approximation to the poste-
rior. None of these are on their own very precise approximations to the actual
posterior but will encode complementary aspects such as prior constraints and
the likelihood term. They will agree upon (be expectation consistent on) some
low order statistics and be accurate in complementary ways. For example the
distribution encoding the prior constraints will give good estimates for marginal
distributions whereas the distribution containing the likelihood term will give
precise estimates for correlations.

To be specific, for the ICA model we use the decomposition implicit in eq.
(5):

q(s) =
1

Zq(λq)
p(s) exp(λTq g(s)) ∝ p(s)u∗(s;λq) (13)

r(s) =
1

Zr(λr)
p(x|A, s,Σ) exp(λTr g(s)) ∝ p(x|A, s,Σ)u∗(s;λr) , (14)

where the exponential factors are chosen to contain the first and diagonal sec-
ond moment g(s) = (s1, . . . , sM ,− s

2
1
2 , . . . ,−

s2M
2 ), the parameters are denoted by

λ = (γ1, . . . , γM ,Λ1, . . . ,ΛM ). Note that the functional form of the q distribu-
tion is identical to the variational distribution eq. (9), whereas the multivariate
Gaussian r distribution does not have a correspondence in the variational frame-
work. This is the key to understanding the improved approximation. We have
retained tractability while keeping a larger part of the correlations present in
the posterior. Next we derive the approximation to the marginal distribution
and conditions for the parameters of the distributions φ = {λq,λr}. First we
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make a trivial reexpression of the marginal likelihood as an average over the q
distribution1

p(x|A,Σ) =
∫
ds p(x|A, s,Σ) p(s) =

Zq(λq)
Zq(λq)

∫
ds p(x|A, s,Σ) p(s)

= Zq(λq)
〈
p(x|A, s,Σ) exp(−λTq g(s))

〉
q
. (15)

The key point of the approximation is then to exchange the average over q with
a distribution of the exponential form, eq. (7), which has the same moments
〈g(S)〉 as q.2 If we make this first order cumulant expansion then in many cases
the finer details of the distributions—whether we use q or u—will not change
the value of the integral very much. Inserting the approximation we arrive at
the EC approximation

lnZEC(λq,λu) ≡ lnZq(λq) + lnZr(λu − λq)− lnZu(λu) . (16)

With a change of variables λr ≡ λu − λq we get the result eq. (5).
The second step in the EC approximation is to determine the parameters

from the stationarity condition [16] which gives the expectation consistent con-
dition of the three distributions

∂A(θ,φ)
∂λq

= 0 : 〈g(s)〉q = 〈g(s)〉u (17)

∂A(θ,φ)
∂λr

= 0 : 〈g(s)〉r = 〈g(s)〉u (18)

with λu = λq +λr. This is exactly what we expressed above: we should set the
parameters such that q, r and u have the same value for the statistics on 〈g(s)〉.
Apart from this they will be very different distributions: q contains the priors
and univariate Gaussian terms and r and u being multivariate and univariate
Gaussian, respectively. An important remaining question is how to tune the
parameters to actually fulfill the expectation consistent conditions. In [20] we
give a recipe based upon Tom Minka’s expectation propagation framework (EP)
[9]. We also give explicit expressions for the marginal likelihood that we repeat
here for completeness.

EC for the ICA Model

The moments and normalizer of the q(s) =
∏
i qi(si), i = 1, . . . ,M , will de-

pend upon the choice of prior through the mean function eq. (12) and likewise
we can introduce a variance function vq,i(γ,Λ). The multivariate Gaussian r-
distribution has covariance and mean

χr = (Λr + ATΣ−1A)−1 (19)
mr = χr(γr + ATΣ−1x) (20)

1We could equivalently had used the r-distribution for this purpose.
2In the ICA case the u will be a product of univariate Gaussians.
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and normalizer (which we need in the marginal likelihood approximation)

lnZr =
d−M

2
ln 2π − 1

2
ln det Σ +

1
2

ln detχr +
1
2
mT
r χ
−1
r mr − 1

2
xTΣ−1x . (21)

The u distribution is a the product of the univariate normals with moments
mu,i = γu,i/λu,i and vu,i = 1/λu,i. Finally the contribution to the marginal
likelihood from u is given by:

lnZu = −M
2

ln 2π +
1
2

∑

i

ln vu,i +
1
2

∑

i

m2
u,i

vu,i
. (22)

4.3 Visualizing the Approximations

In this subsection we will try give provide some intuition about the two frame-
works. What are the distributions we find approximating? Are they actually
providing good approximations to the posterior? In the case of multi-modal dis-
tributions, is it necessary that the approximating distributions are themselves
multi-modal in order to provide good approximations to the marginal likelihood
and to marginals? It is known that the divergence measure can be tuned between
in one extreme approximating the largest mode to the other extreme having an
approximation which is non-zero whenever the posterior is non-zero, see [10]
and references therein. The KL divergence lies in between these extremes and
is typically the only tractable measure in this class of so-called α-divergences.

We have already argued that EC has an advantage compared to variational
because it has two variational distributions representing complementary aspects
of the exact posterior distribution. We make a visualization of this point by con-
sidering a simple two source case, where each source is drawn from a heavy-tailed
distribution (two-component mixture of Gaussians with mixing proportions 0.5
and 0.5, means zero and variances 0.01 and 1, respectively). We also have

two sensors, mixing matrix A =
(

1 1/
√

2
0 1/

√
2

)
and isotropic observation noise

with variance σ2 = 0.1. In figure 1 we compare the posterior p(s1, s2|x,A, σ2),
where x is a realized from the generative model, with q(s1, s2) = q1(s1)q2(s2)
and r(s1, s2) for EC and q(s1, s2) for variational. In figure 2 we compare the
corresponding marginal distributions. This result is very typical. (The code to
generate random examples like this can be obtained from the authors). This ex-
ample illustrates the point made above. For EC, qi(si), i = 1, . . . ,M gives quite
precise approximations to the marginals (and can even handle multi-modality)
and r(s) gives a quite precise approximation to the correlations, but is too simple
to catch the shape of the distribution in the high density regions. For varia-
tional, qi(si), i = 1, . . . ,M gives a reasonable approximation to the marginals,
but not as good as EC because q(s) is a diagonal too narrow diagonal (overcon-
fident) approximation to the posterior. Note that q(s) in EC is wider because
it is not a fit to the posterior but rather set to be consistent with r. Note also
that the (Gaussian distributed) marginals of r are very poor approximations to
the exact marginals.
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Figure 1: Contour plot of log densities for a 2d posterior distribution example
with heavy-tailed prior distributions (see text for details). The upper left plot
is the exact log posterior, the upper right plot is for log q for variational, the
lower plots are for EC with log r left and log q right.

5 Optimization of Parameters

In this section we discuss different approaches for optimization of the marginal
likelihood (approximations or exact). Although optimization of parameters is
in a sense trivial because we can straightforwardly apply the EM algorithm it is
of great practical importance to use schemes that are faster than the basic EM
algorithm: In cases where the empirical noise estimate is small one can simply
not obtain convergence in any reasonable number of iterations with the EM
algorithm [3, 17]. The good news is that simple extensions—in this paper we
use adaptive overrelaxed EM [19] and the easy gradient recipe [13]—are easy to
implement since it is simply a matter of using the computations performed in
EM in a different way. In the following we will derive the optimization techniques
and then give explicit expressions for the derivatives for the ICA model for the
two approximations.

For all the algorithms we need to take derivatives with respect to the pa-
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Figure 2: Marginals for the 2d example in figure 1. The two upper plots are
the marginals q1(s1) and q2(s2) for variational (full line in red). The exact
marginals are indicated by the full line with points (black). The lower plots
are the same for EC with an additional dash-dotted line (blue) indicating the
Gaussian distributed marginals of r.

rameters θ (mixing matrix and noise covariance) with respect to the objective
B(θ,φ) (or A(θ,φ)). The crucial point we exploit in the algorithms is to take
the derivative after solving the stationarity condition ∂B(θ,φ)

∂φ = 0 with respect
to parameters of the approximating distributions φ. This namely implies that
we only need to take partial derivatives:

dB(θ,φ)
dθ

=
∂B(θ,φ)

∂θ
+
∂B(θ,φ)
∂φ

∂φ

∂θ
=
∂B(θ,φ)

∂θ
. (23)

In the EM algorithm we perform a coordinate ascent and are thus guaranteed
to attain a local maximum of the objective. Step n in the EM-algorithm reads

E-step: φn ← argmax
φ

B(θn−1,φ)

M-step: θn ← argmax
θ

B(θ,φn)
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In the adaptive overrelaxed EM (AOEM) [19] we take steps in the EM direction
with an adaptive learning rate η which can be overrelaxed, that is larger than
1:

θn+1 ← θn + η(θnEM − θn) .

Whenever the objective function decreases we backtrack to the pure EM update,
and set η to one in the next step. Otherwise we multiply η with a factor above
one. Depending upon the problem, η will get as large as say 40 indicating that
the EM step-length is much too conservative.

In the easy gradient recipe [13] we recycle the EM computations to make
a general function that evaluates the gradient and the objective. The pseudo
code looks like this:

function [B, dBdθ ] = bound(θ)
1) Find φ∗ such that ∂B(θ,φ)

∂φ

∣∣
φ=φ∗ = 0 (E-step)

2) Calculate B(θ,φ∗)
3) Calculate ∂B(θ,φ∗)

∂θ (M-step)

This function can be given as input to any standard effective numerical optimizer
such as quasi-Newton or conjugated gradient.

5.1 Derivatives

The derivatives of the bound are easily derived for the ICA model3

∂B(θ,φ)
∂A

= Σ−1
(
X〈S〉Tq −A〈SST 〉q

)
(24)

∂B(θ,φ)
∂Σ

=
N

2
Σ−1 − 1

2
Σ−1〈(X−AS)(X−AS)T 〉qΣ−1 (25)

∂B(θ,φ)
∂ν

= 〈∂ ln p(s|ν)
∂ν

〉q . (26)

The derivatives with respect to A(θ,φ) gives identical results apart from the
fact that we should exchange the average with respect the q distribution in
the first two equations with an average over the r distribution. This make a
very significant difference since the q distribution is factorized whereas r is a
multivariate Gaussian. Special care has to be taken to constrained variables
[20], e.g. below we discuss multiplicative updates for non-negative A.

6 Non-negative Decompositions

In this section we describe simulation results applying the empirical Bayes ICA
framework to non-negative decompositions.4 We describe and compare in detail

3We ignore subtlety that Σ is a symmetric matrix as we get the same result treating it as
a general matrix.

4A Matlab toolbox, described in detail in [20], is available from http://mole.imm.dtu.dk/

that has all the features necessary to reproduce these results.
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non-negative matrix factorization (NMF) and the empirical Bayes ICA frame-
work for the case of non-negative constraints on the mixing matrix. The main
messages are that both approaches give quite similar results in the simplest
set-up (isotropic noise model) but that using the Bayesian approach opens the
possibility to make inferences not available in non-probabilistic approaches like
NMF. More specifically in the (empirical) Bayesian approach we can estimate
marginal likelihoods useful for model selection and parameters besides the mix-
ing matrix for example a full or diagonal noise covariance matrix.

In this paper we have presented different ways to approximate source statis-
tics and optimize parameters and also discussed that we expect EC to give more
precise estimates of source statistics than variational. An obvious question is
how much difference in practical situations there will be between the different
methods. In our companion paper [20] we have made an effort to answer this
question. Although simulations can never be exhaustive they support the fol-
lowing conclusions: The best results are obtained using the EC framework and
the advanced optimization methods. In the following simulations we used 25
EM-steps with EC in the E-step and adaptive over-relaxed EM in the M-step
(because the BFGS-optimizer cannot be applied to large parameter dimension-
ality). Another important empirical finding of Ref. [20] is that model selection
using BIC works for known ground truth although convergence of the marginal
likelihood can be slow even for advanced optimization methods. It is observed
that small changes in for example the noise variance estimate, which takes many
iterations to accomplish, will affect the value of the marginal likelihood signif-
icantly. Finally, non-convergence of the framework is observed in rare cases.
Whether it is due to local maxima or numerical instability of EC or the mean
functions (which contains erf-functions) is hard to say. Usually the problem can
be solved by restarting the algorithm with different random A.

6.1 Non-negative Matrix Factorization (NMF)

Non-negative matrix factorization (NMF) [7, 8] has become a popular technique
for factorizing non-negative data into non-negative matrices, i.e. X ≈ AS, where
all entries of the matrices A and S are non-negative. Here we summarize the
least squares NMF algorithm since it is closest in spirit to our ICA additive
noise generative model eq. (1):

min
A,S
||X−AS||2 subject to Ali ≥ 0, Sit ≥ 0 for all l, i, t .

It can be shown that the objecive is non-increasing using the following update
rules for the two matrices [8]

Sit ← Sit

[
ATX

]
it

[ATAS]it

Alt ← Alt

[
XST

]
lt

[ASST ]lt
.
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The algorithm thus alternates in an EM-like fashion between updating all el-
ements of each of the two matrices. This extreme simplicity and convergence
guarantee have undoubtedly contributed to making NMF very popular. A fur-
ther important theme is sparsity of the decomposition. Figure 5 (upper plots)
gives an example where the columns of A are sparse. The sparsity is a conse-
quence of the fact that only additions are allowed, compare with figure 8 and can
be further enhanced by regularization, that is putting a prior on the elements of
the matrices. An adaptive overrelaxed version of NMF can also be constructed
[19]. We will now contrast NMF with it’s empirical Bayesian counterpart.

6.2 Non-negative Empirical Bayesian ICA

NMF is in structure very similar to EM. We will thus discuss non-negative
empirical Bayesian ICA in relation to EM. Generalizing the results to the op-
timization speed-ups discussed above is relatively strightforward, for example a
gradient-type methods can be applied by reparameterizing Aij = expαij , where
the new parameters are free [20]. In standard EM, one will in the E-step calcu-
late the sufficient statistics of S. In our implementation we use either variational
or EC with an exponential prior for the sources to enforce non-negatively of S:
p(s) = exp(−s)Θ(s), where Θ(s) is the Heaviside step-function. However, the
following discussion about the M-step is completely general.

Setting the derivatives in eq. (24) to zero and solving with respect to A will
not solve the problem since it will not ensure non-negativity. We can enforce this
by either introducing Lagrange multipliers [5] or come up with an update rule
that like NMF preserves non-negativity and is non-decreasing in the objective
(marginal Likelihood bound/approximation). The following update rule

Alt ← Alt

[
Σ−1X〈ST 〉]

lt

[Σ−1A〈SST 〉]lt
.

closely resembles the NMF A-update and was in fact suggested in Ref. [5] as
a recipe for satisfying the Karush-Kuhn-Tucker conditions arising in the con-
strained optimization problem. If Σ is either isotropic Σ = σ2I or diagonal the

update reduces to Alt ← Alt
[X〈ST 〉]

lt

[A〈SST 〉]lt . This update has the advantage that it
is independent of Σ. We can thus solve the joint M-step of A and Σ by first
solving for A and then plugging the solution for A into the update for Σ derived
from eq. (25).

There are a few important differences between NMF and empirical Bayes:
Source correlations are modelled in the latter. This should make a difference
in at least some cases. Working in a likelihood setting and not just with a cost
function we can optimize other parameters such as the noise covariance and
use the marginal likelihood in combination with BIC to make model selection.
An important advantage of NMF is simplicity. One EM-step in our empirical
Bayes consists of an E-step solving a set of non-linear equations to get the suffi-
cient statistics and a M-step iterating the A-update above to convergence (and
updating the noise-covariance afterwards). In least squares NMF, an additive
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normal noise model is implicitly assumed with the slight modification that neg-
ative data cannot occur. In the likelihood setting on the other hand, the model
assumptions are explicit and it make sense to run the algorithm on data contain-
ing negative entries. In the following we will make an empirical investigation of
the two algorithms.

7 Simulations on Hand-written Digits

We revisit the data set of 500 hand-written ‘3’s from the MNIST database first
used by Miskin and MacKay [11] to demonstrate that a purely non-negative
ICA decomposition (that is all elements in both A and S are constrained to be
non-negative) can yield a set of localized features representing different stroke
styles. We will further extend the original analysis with a comparison with the
closely related technique of non-negative matrix factorization [7, 8] and look at
model selection.
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Figure 3: Marginal log likelihood (upper dashed line) and BIC score (lower full
line) left for non-negative ICA and right for standard ICA as a function of the
number of sources. The maximum of the BIC score is around 36 sources for
non-negative ICA and at least 49 for standard ICA. Since standard ICA is a
more flexible model and thus is able to fit the data more closely, it will tend to
prefer larger models.

In figure 3 we compare model selection for non-negative ICA: exponential
source prior and constraint optimization of A with more standard ICA: positive
kurtosis source prior (two component equal weight zero mean Gaussian mixture
with variance 1 and 0.01, respectively) and free optimization of the mixing
matrix. In both cases the noise is constrained to be diagonal and iid, i.e. Σ =
σ2I, where the simple noise variance is estimated as the average of the diagonal
of the full empirical Bayes noise co-variance: σ2 ← 1

d

∑
l Σ

full
ll .

Two notes of caution about the use of BIC in this context should be made:
the input dimension is very large d = 162 = 256. We are therefore optimizing a
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Figure 4: Upper plots: Feature images (columns in A) for non-negative ICA
(left) and NMF (right) with M = 9 sources. Lower left plot: From left to right
three sample images, their reconstruction A〈s〉 and hidden representation 〈s〉
for non-negative ICA. On the right the corresponding result for NMF.

lot of parameters, dim(A)=d×M , with d×N entries in the data we might not
be in the asymptotic regime required for BIC to be valid. Furthermore for non-
negative ICA we are ignoring the complication dealing with constraint variables,
i.e. the Laplace approximation used in BIC does not take into account non-
negativity constraints. Although BIC should still give a reasonable yardstick
for model selection in this case, a hierarchical Bayesian approach for example
approximated by variational Bayes might be preferable [11]. It should also
be noted that EC is not as readably applicable to the hierarchical Bayesian
approach because when both mixing matrix and sources are both treated as
random variable the r distribution, eq. (14) will no longer be tractable. Further,
currently unavailable, approximations are thus needed.

From a Bayesian perspective of course if we have prior knowledge that a
non-negative decomposition is more closely related to the generative process of
handwriting we can disregard the standard ICA (and other type of unconstraint
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Figure 5: The same as the previous figure with M = 36 sources.

decomposition like PCA for that matter). However, it is still interesting to
compare the results of the type as we shall do in the following.

In figures 4 and 5 we compare the feature images of non-negative ICA with
non-negative matrix factorization. We see that basically the results of the two
methods for very similar. Not very surprisingly they both tend to for a low
number of sources to give feature images that are prototype images whereas
when we increase the number of sources they become parts based. Non-negative
ICA is not much slower than NMF at least up to moderate number of sources
∼ 30 where the O(NM3) complexity factor in EC starts to slow things down
significantly.

So far we have shown simulations with a common variance for all pixels.
Clearly, some pixels are almost never used and other vary a lot from image to
image. Since the noise estimate is an an average over both we might believe
that the less varying pixels are underfitted and more varying pixels overfitted.
On the other hand the overall quality of the generative model will depend upon
how we perceive the image as a whole. Therefore, it might be dangerous to
weight the pixel unevenly as we do if we adapt the noise variance individually
as: Σ = diag(σ2

1 , . . . , σ
2
d). In figure 6 we show the result of running non-negative
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Figure 6: Non-negative ICA with diagonal noise model for M = 36. Upper
plot left: Feature images (columns in A). Upper right plot: noise variances
represented as an image and lower right the distribution of variances. The
mean value is somewhat higher than the value found for the simple model,
σ2 = 0.0262. Lower left plot: From left to right three sample images, their
reconstruction A〈s〉 and hidden representation 〈s〉.

ICA for M = 36 with the diagonal noise model. We can observe a couple of
things: the feature images are no longer sparse in the same way as with the
simpler model. The reconstruction does not appear as nice either. This indicates
that it is better to take the noise model to be simple if we want the images to
look good to the human eye. Finally we can indeed see that the noise variances
differ a lot across the image. In conclusion, the empirical Bayes ICA framework
can fit more sophisticated noise models that the one implicit in NMF but it will
be problem dependent whether they are appropriate.

Another feature of the ICA not so often used is the use on ICA on test sets,
see [18] for an application to condition monitoring. The idea is simply that
we tune the hyperparameters on a training set and then calculate the marginal
likelihood on a test set keeping the hyperparameters fixed. This can give us a
(non-Bayesian) cross-validation type test of the adequacy of the model used. In

19



5 10 15 20 25 30 35 40 45
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

BI
C

 a
nd

 lo
g 

Li
ke

lih
oo

d

M

5 10 15

5

10

15

5 10 15

5

10

15

0 10 20 30

2

4

6

5 10 15

5

10

15

5 10 15

5

10

15

0 10 20 30

2

4

6

8

5 10 15

5

10

15

ICA: hidden representation for 3 3s
5 10 15

5

10

15

0 10 20 30

2

4

6

Figure 7: Running ICA on a test set. Left figure shows the marginal likelihood
on the training set with 250 samples (dashed), on the test set also with 250
samples (dash-dotted) and the BIC score (full). The right plot shows the recon-
struction on three test set samples for M = 36. These are the same samples as
used above.

figure 7 we have split the training set in 250/250 in training and test. We observe
that the test marginal likelihood is somewhat lower training value for all number
of sources (above 1) suggesting that we are overfitting and that the model is
not a perfect generative model for handwritten digits. Clearly the linear model
fails to capture that some strokes are not independent, i.e. different strokes that
describes the same part of the digit are mutually exclusive and some strokes will
not fit together to make a digit. One can say that non-negative ICA (or NMF)
can find very intuitive appealing feature images but cannot put them together.
Finding models going beyond the basic linear paradigm that are capable of this
grouping together of features is an important task.

Finally, we show that the standard ICA produces some reconstruction ar-
tifacts that underlines that it is a worse generative model for images than the
non-negative model. Figure 8 shows the feature images and reconstruction for
the same cases as figure 5.

8 Conclusion

In this paper we have described a flexible empirical Bayes framework for in-
dependent component analysis. We have used two deterministic mean field
methods, variational Bayes and the expectation consistent framework, to ob-
tain estimates of the marginal likelihood and source posterior statistics. We
have presented three (hyper)parameter (mixing matrix and noise covariance)
optimization schemes: the EM algorithm, adaptive overrelaxed EM and the
easy gradient recipe. The EM algorithm only use gradient information whereas
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Figure 8: Standard ICA: positive kurtosis source prior and free optimization
of A and noise variance. Should be compared with non-negative ICA figure 5.
Note that the reconstruction error is smeared out over the whole image whereas
the error for non-negative ICA only appears at the edges of the digit.

the latter two one need to evaluate both the gradient and the objective function
(the marginal likelihood). In many practical cases it is necessary to abandon
the basic EM algorithm to get convergence. Furthermore, we have made a freely
available easy-to-use Matlab toolbox that supports a wide range of source pri-
ors, empirical Bayes optimization of mixing matrix and noise covariance and
model selection via the Bayesian Information Criterion (BIC).

We have demonstrated the versatility of framework by finding basis function
decompositions for non-negative source priors. The type of solutions found
are very similar to those of non-negative matrix factorization. This is not so
surprising because the two models share the same very strict constraints of
allowing no subtractions. The added benefits that comes with the statistical
framework are model selection and the ability to deal with other parameters.
But perhaps the most interesting thing about the very appealing parts based
images that comes out of linear non-negative decompositions is that the actually
point to the fact that these models are not good generative models of images.
Some parts, for example different stroke styles for the same part of had-written
digit, are mutually exclusive and thus not well-described by a linear model. With
the more complicated non-linear models that will be needed for this task (a good
aproximation to) Bayesian inference will be even more important. These models
could range from ICA models with coupled source priors to mixture models and
layered network models [4].

Seemingly the instantaneous ICA problem have been receiving less attention
the last few years from the machine learning community, but this is not due to
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the problems being solved or complete flexibility is achieved. Techniques for
instantaneous ICA which are fast, reliable and at the same time flexible with
respect to choice of source prior and the number of sensors and sources, are still
very rare. We hope with the presented approach based on variational mean field
techniques to have contributed to this direction of research and inspired others
to embrace the theoretical beauty and practical significance of this approxima-
tion to Bayesian ICA. We see the current interest in very sparse non-negative
decompositions as one place where ICA with specific prior distributions can be
useful.
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