394 research outputs found

    Synchrony vs. Causality in Asynchronous Petri Nets

    Get PDF
    Given a synchronous system, we study the question whether the behaviour of that system can be exhibited by a (non-trivially) distributed and hence asynchronous implementation. In this paper we show, by counterexample, that synchronous systems cannot in general be implemented in an asynchronous fashion without either introducing an infinite implementation or changing the causal structure of the system behaviour.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Synchrony versus causality in distributed systems

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Given a synchronous system, we study the question whether – or, under which conditions – the behaviour of that system can be realized by a (non-trivially) distributed and hence asynchronous implementation. In this paper, we partially answer this question by examining the role of causality for the implementation of synchrony in two fundamental different formalisms of concurrency, Petri nets and the π-calculus. For both formalisms it turns out that each ‘good’ encoding of synchronous interactions using just asynchronous interactions introduces causal dependencies in the translation

    New Platform Technology for Comprehensive Serological Diagnostics of Autoimmune Diseases

    Get PDF
    Antibody assessment is an essential part in the serological diagnosis of autoimmune diseases. However, different diagnostic strategies have been proposed for the work up of sera in particular from patients with systemic autoimmune rheumatic disease (SARD). In general, screening for SARD-associated antibodies by indirect immunofluorescence (IIF) is followed by confirmatory testing covering different assay techniques. Due to lacking automation, standardization, modern data management, and human bias in IIF screening, this two-stage approach has recently been challenged by multiplex techniques particularly in laboratories with high workload. However, detection of antinuclear antibodies by IIF is still recommended to be the gold standard method for antibody screening in sera from patients with suspected SARD. To address the limitations of IIF and to meet the demand for cost-efficient autoantibody screening, automated IIF methods employing novel pattern recognition algorithms for image analysis have been introduced recently. In this respect, the AKLIDES technology has been the first commercially available platform for automated interpretation of cell-based IIF testing and provides multiplexing by addressable microbead immunoassays for confirmatory testing. This paper gives an overview of recently published studies demonstrating the advantages of this new technology for SARD serology

    The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription

    Get PDF
    The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes

    Attracting AID to targets of somatic hypermutation

    Get PDF
    The process of somatic hypermutation (SHM) of immunoglobulin (Ig) genes requires activation-induced cytidine deaminase (AID). Although mistargeting of AID is detrimental to genome integrity, the mechanism and the cis-elements responsible for targeting of AID are largely unknown. We show that three CAGGTG cis-elements in the context of Ig enhancers are sufficient to target SHM to a nearby transcribed gene. The CAGGTG motif binds E47 in nuclear extracts of the mutating cells. Replacing CAGGTG with AAGGTG in the construct without any other E47 binding site eliminates SHM. The CA versus AA effect requires AID. CAGGTG does not enhance transcription, chromatin acetylation, or overall target gene activity. The other cis-elements of Ig enhancers alone cannot attract the SHM machinery. Collectively with other recent findings, we postulate that AID targets all genes expressed in mutating B cells that are associated with CAGGTG motifs in the appropriate context. Ig genes are the most highly mutated genes, presumably because of multiple CAGGTG motifs within the Ig genes, high transcription activity, and the presence of other cooperating elements in Ig enhancers

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Die Sieben Todsünden

    Get PDF
    Weshalb faszinieren und inspirieren die Sieben Todsünden bis heute – auch und gerade obwohl theologische Kommentare längst an Verbindlichkeit eingebüßt haben? In exemplarischen Studien widmet sich der Sammelband der Wirkungsgeschichte der Sieben Todsünden in den unterschiedlichen Künsten: Literatur und bildende Kunst, Film und Fernsehen. Der Fokus liegt weniger auf einer Ideengeschichte der Todsünden als auf deren Formelhaftigkeit, die gerade im Verblassen der ursprünglichen Hintergründe ihre Wirkmacht in breiter diskursiver Streuung entfaltet. Dabei reichen die vielfältigen Fortschreibungen und Transformationen weit über das frühe Mittelalter und die klassische Theologie hinaus und zeigen in der Moderne und Postmoderne verstärkt nur noch Allusionen auf die ursprünglich religiöse Ordnungsphantasie. So werden die Todsünden zu einem intermedialen Fundus für ethische und politische Reflexionen, ästhetische Transformationen und künstlerische Experimente. Der Band versammelt Studien, die sich aus literatur-, medien- und kulturwissenschaftlicher Perspektive sowohl den einzelnen Todsünden superbia, invidia, ira, acedia, avaritia, gula, luxuria als auch dem Septenar insgesamt widmen

    Long term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Get PDF
    Background: Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against over-activity of the immune system. In this study we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods: Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry.mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral, intracerebral injection of LPS. Results: Repeated systemic LPS challenges resulted in increased brain IL-1?, TNF? and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1? and IL-12 levels in Salmonella typhimurium infected mice increased over three weeks, with high interferon-? levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS 4 weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions: These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have aprofound effect on the onset and/ or progression of pre-existing neurodegenerative disease.Humans and animals are regularly exposed to bacterial and viral pathogens that can have a considerable impact on our day-to-day living [1]. Upon infection, a set of immune, physiological, metabolic, and behavioural responses is initiated, representing a highly organized strategy of the organism to fight infection. Pro-inflammatory mediators generated in peripheral tissue communicate with the brain to modify behaviour [2], which aids our ability to fight and eliminate the pathogen. The communication pathways from the site of inflammation to the brain have been investigated in animal models and systemic challenge with lipopolysaccharide (LPS) or double stranded RNA (poly I:C) have been widely used to mimic aspects of bacterial and viral infection respectively [3, 4]. These studies have provided evidence that systemically generated inflammatory mediators signal to the brain via both neural and humoral routes, the latter signalling via the circumventricular organs or across the blood-brain barrier (BBB). Signalling into the brain via these routes evokes a response in the perivascular macrophages (PVMs) and microglia, which in turn synthesise diverse inflammatory mediators including cytokines, prostaglandins and nitric oxide [2, 5, 6]. Immune-to-brain communication also occurs in humans who show changes in mood and cognition following systemic inflammation or infection, which are associated with changes in activity in particular regions of the CNS [7-9]. While these changes are part of our normal homeostasis, it is increasingly evident that systemic inflammation has a detrimental effect in animals and also humans, that suffer from chronic neurodegeneration [10, 11]. We, and others, have shown that microglia become primed by on-going neuropathology in the brain, which increases their response towards subsequent inflammatory stimuli, including systemic inflammation [12, 13] Similar findings have been made in aged rodents [14, 15], where it has been shown that there is an exaggerated behavioural and innate immune response in the brainto systemic bacterial and viral infections, but the molecular mechanisms underlying the microglial priming under these conditions is far from understood.Humans and animals are rarely exposed to a single acute systemic inflammatory event: they rather encounter infectious pathogens that replicate in vivo or are exposed to low concentrations of LPS over a prolonged period of time. There is limited information on the impact of non-neurotrophic bacterial infections on the CNS and whether prolonged systemic inflammation will give rise to either a hyper-(priming) or hypo-(tolerance) innate immune response in the brain in response to a subsequent inflammatory stimulus.In this study we measured the levels of cytokines in the serum, spleen and brain as well as assessing sickness behaviour following a systemic bacterial infection using attenuated Salmonella typhimurium SL3261: we compared the effect to that of repeated LPS injections. We show that Salmonella typhimurium caused acute, transient behavioural changes and a robust peripheral immune response that peaks at day 7. Systemic inflammation resulted in a delayed increase in cytokine production in the brain and priming of microglia, which persisted up to four weeks post infection. These effects were not mimicked by repeated LPS challenges. It is well recognised that systemic bacterial and viral infections are significant contributors to morbidity in the elderly [16], and it has been suggested that primed microglia play a role in the increased clinical symptoms seen in patients with Alzheimer’s disease who have systemic inflammation or infections [11, 17]. We show here that systemic infection leads to prolonged cytokine synthesis in the brain and also priming of brain innate immune cells to a subsequent focal inflammatory challenge in the brain parenchyma
    corecore