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Given a synchronous system, we study the question whether the behaviour of that system can be
exhibited by a (non-trivially) distributed and hence asynchronous implementation. In this paper
we show, by counterexample, that synchronous systems cannot in general be implemented in an
asynchronous fashion without either introducing an infinite implementation or changing the causal
structure of the system behaviour.
keywords: asynchrony, distributed systems, causal semantics, Petrinets

1 Introduction

It would be desirable – from a programming standpoint – to design systems in a synchronous fashion,
yet reap the benefits of parallelism by means of an (ideally automatically generated) asynchronous im-
plementation executed on multiple processing units in parallel. We consider the question under which
circumstances such an approach is applicable, or equivalently, what restrictions must be placed on the
synchronous design in order that it may be simulated asynchronously.

We formalise this problem by means of Petri nets (Section 2),a semi-structural requirement (Section
3) on Petri nets to enforce asynchrony in the implementation, and an equivalence relation (Section 4)
on possible Petri net behaviours to decide whether a candidate implementation is indeed faithful to the
synchronous specification.

Countless equivalence relations for system behaviour havealready been proposed. When comparing
the strictness of these equivalences, as done in [2] or [3], and exploring the resulting lattice, one finds
multiple “dimensions” of features along which such an equivalence may be more or less discriminating.
The most prominent one is the linear-time branching-time axis, denoting how well the decision structure
of a system is captured by the equivalence. Another dimension relevant to this paper is that along which
the detail of the causal structure increases. On the first of these two dimensions, we would at the very
least like to detect deadlocks introduced by the implementation, on the second one, at least a reduction
in concurrency due to the implementation. As every (non-trivial) implementation will introduce internal
τ-transitions, a suitable equivalence must abstract from them, as long as they do not allow a divergence.
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Figure 1: A fully reached, pureM , the problematic structure from [4]

a b c

Figure 2: A repeated pureM . A finite, 1-safe, undistributable net used as a running counterexample.

[4] answers part of the question of distributed implementability for a certain equivalence of this spec-
trum, namely step readiness equivalence. Step readiness equivalence is one of the weakest equivalences
that respects branching time, concurrency and divergence to some degree but abstracts from internal
actions. For this equivalence we derived an exact characterisation of asynchronously implementable
(“distributable”) Petri nets. The main difficulty in implementing arbitrary Petri nets up to step readiness
equivalence is a structure called pureM , depicted in Figure 1, where two parallel transitions are inpair-
wise conflict with a common third. By [4] a synchronous net is distributable only if it contains no fully
reachable pureM . The other direction needed for exactness has not been published yet, as the only as of
yet existing proofs utilises an infinite implementation.

Using the strictly weaker completed step trace equivalence, [10] proved any synchronous net to be
distributable. Comparing these two results and the given implementation in the latter we made a very
interesting observation: We were unable to find an implementation of a synchronous net with a fully
reachable pureM which did not introduce additional causal dependencies.

In this paper we show that this drawback holds for any sensible encoding of synchronous interactions,
i.e., it is a general phenomenon of encoding synchrony. We reach that result by extending the pureM of
Figure 1 into a repeated pureM , depicted in Figure 2. We thereby get a separation result similar to [4]
along a different, namely the causal, dimension of the spectrum of behavioural equivalences.

We introduce basic Petri net concepts in Section 2, then turnto recounting the definition of dis-
tributability in Section 3. Afterwards we introduce completed pomset trace equivalence in Section 4,
justify it by means of illustrative examples, and use it in Section 5 to prove the impossibility of imple-
menting general Petri nets while respecting causality. Finally Section 6 concludes.
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2 Basic Notions

Most material in this section has been taken verbatim or withminimal adaptation from [4] or [10].
Where dealing with tuples, we use pr1,pr2, . . . as the projection functions returning the first, second, . . .
element respectively. We extend these functions to sets element-wise.

Definition 1. Let Act be a set ofvisible actionsandτ 6∈Act be aninvisible action.
A labelled net(over Act) is a tupleN = (S,T,F,M0, ℓ) where

• S is a set (ofplaces),
• T is a set (oftransitions),
• F ⊆ S×T ∪T ×S(theflow relation),
• M0 ⊆ S(the initial marking) and
• ℓ : T → Act∪{τ} (the labelling function).

A net is calledfinite iff SandT are finite.
Petri nets are depicted by drawing the places as circles, thetransitions as boxes containing the respective
label, and the flow relation as arrows (arcs) between them. When a Petri net represents a concurrent
system, a global state of such a system is given as amarking, a set of places, the initial state beingM0.
A marking is depicted by placing a dot (token) in each of its places. The dynamic behaviour of the
represented system is defined by describing the possible moves between markings. A markingM may
evolve into a markingM′ when a nonempty set of transitionsG fires. In that case, for each arc(s, t) ∈ F
leading to a transitiont in G, a token moves along that arc froms to t. Naturally, this can happen only
if all these tokens are available inM in the first place. These tokens are consumed by the firing, butalso
new tokens are created, namely one for every outgoing arc of atransition inG. These end up in the places
at the end of those arcs. A problem occurs when as a result of firing G multiple tokens end up in the same
place. In that caseM′ would not be a marking as defined above. In this paper we restrict attention to nets
in which this never happens. Such nets are called1-safe. Unfortunately, in order to formally define this
class of nets, we first need to correctly define the firing rule without assuming 1-safety. Below we do this
by forbidding the firing of sets of transitions when this might put multiple tokens in the same place.

To help track causality throughout the evolution of a net, weextend the usual notion of marking to
dependency marking. Within these dependency markings, every token is augmented with the labels of
all transitions having causally contributed to its existence. The other basic Petri net notions presented
here have been extended in the same manner. While it might seem more natural to annotate the causal
history of the tokens by a partial order, we only use a set herein order to keep the number of reachable
markings finite for finite nets (a property a later proof will utilise).

We denote the preset and postset of a net elementx ∈ S∪T by •x := {y | (y,x) ∈ F} and x• :=
{y | (x,y) ∈ F} respectively. These functions are extended to sets in the usual manner, i.e.•X := {y |
y∈ •x, x∈X}.

Definition 2. Let N = (S,T,F,M0, ℓ) be a net. LetM1,M2 ⊆ S×P(Act).
G⊆ T,G 6=∅, is called adependency step from M1 to M2, M1[G〉NM2, iff

• all transitions contained inG are enabled, i.e.

∀t ∈ G.•t ⊆ pr1(M1)∧ (pr1(M1)\
•t)∩ t• =∅ ,

• all transitions ofG are independent, that is not conflicting:

∀t,u∈ G, t 6= u.•t ∩ •u=∅∧ t•∩u• =∅ ,
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• causalities are extended by the labels of the firing transitions:

M2 = {p∈ M1 | pr1(p) 6∈
•G}∪
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Applying pr1 to a dependency marking results in the classical Petri net notion of marking and similar for
the other notions introduced in this section. We will however mainly employ the versions defined here
and drop the qualifier “dependency” most of the time. A token(s,P) ∈ M is Q-dependent iffQ⊆ P and
Q-independent iffP∩Q=∅.

To simplify the following argumentation we use some abbreviations.
µ

−→N denotes a labelled step
on a single transition labelledµ .

a
=⇒N denotes a step ona surrounded by arbitraryτ-steps, i.e.,=⇒N

abstracts fromτ-steps.

Definition 3. Let N = (S,T,F,M0, ℓ) be a labelled net.

We extend the labelling functionℓ to (multi)sets element-wise.

−→N ⊆ P(S×P(Act))×NAct×P(S×P(Act)) is given by

M1
A

−→N M2 ⇔∃G⊆ T.M1 [G〉N M2∧A= ℓ(G)
τ

−→N ⊆ P(S×P(Act))×P(S×P(Act)) is defined by
M1

τ
−→N M2 ⇔∃t ∈T.ℓ(t)= τ ∧M1 [{t}〉N M2

=⇒N ⊆ P(S×P(Act))×Act∗×P(S×P(Act)) is defined by

M1
a1a2···an=====⇒N M2 ⇔ M1

τ
−→

∗

N
{a1}
−→N

τ
−→

∗

N
{a2}
−→N

τ
−→

∗

N · · ·
τ

−→
∗

N
{an}
−→N

τ
−→

∗

N M2

where
τ

−→
∗

N denotes the reflexive and transitive closure of
τ

−→N.

We omit the subscriptN if clear from context.

We writeM1
A

−→N for ∃M2.M1
A

−→N M2, M1 X

A
−→N for ∄M2.M1

A
−→N M2 and similar for the other two

relations. LikewiseM1[G〉N abbreviates∃M2.M1[G〉NM2. A markingM1 is said to bereachableiff there
is a sequence of labelsσ ∈ Act∗ such thatM0 ×{ /0}

σ
=⇒N M1. The set of all reachable markings is

denoted by[M0〉N.
As said before, here we only want to consider 1-safe nets. Formally, we restrict ourselves tocontact-

free nets, where in every reachable markingM1 ∈ [M0〉 for all t ∈ T with •t ⊆ pr1(M1)

(pr1(M1)\
•t)∩ t• =∅ .

For such nets, in Definition 2 we can just as well consider a transitiont to be enabled inM iff •t ⊆ pr1(M),
and two transitions to be independent when•t ∩ •u=∅.

3 Distributed Nets

After having introduced Petri nets in general, we still needto find a notion of such a net being distributed
before being able to answer the question of distributed implementability. A straightforward approach is
to assign to each net element alocation, place sensible restrictions on arrows crossing location borders,
and restrict the sets of net elements being allowed to resideon the same location.

We will regard locations as sequential execution units of the underlying system, each one able to
execute at most one action during each step. This necessitates that no pair of transitions firing in the



J.-W. Schicke, K. Peters & U. Goltz 123

τ τ τ

a b c

Figure 3: A centralised implementation of Figure 2, location borders dotted.

same step can reside on the same location. Additionally, if locations are indeed physically apart as their
name suggests, communication between them can only proceedasynchronously.

We discussed a very similar notion of distribution in [4], whence the following description and def-
inition of the present version have been derived from. The central insight from that paper is that the
synchronous removal of tokens from preplaces of a transition is essential to the conflict resolution taking
place between multiple enabled transitions and that hence transitions must reside on the same location
as their preplaces.

We model the association of locations to the places and transitions in a netN = (S,T,F,M0, ℓ) as a
functionD : S∪T →Loc, with Loc a set of possible locations. We refer to such a function as adistribution
of N. Since the identity of the locations is irrelevant for our purposes, we can just as well abstract from
Loc and representD by the equivalence relation≡D on S∪T given byx≡D y iff D(x) = D(y).

Definition 4. Let N = (S,T,F,M0, ℓ) be a net.
Theconcurrency relation⌣⊆T2 is given byt⌣u⇔ t 6=u∧∃M∈ [M0〉.M[{t,u}〉. N is distributediff
it has a distributionD such that

• ∀s∈ S, t ∈ T.s∈ •t =⇒ t ≡D s,

• t ⌣ u =⇒ t 6≡D u.
It is straightforward to give a semi-structural1 characterisation of this class of nets:

Observation 1.
A net is distributed iff there is no sequencet0, . . . , tn of transitions witht0 ⌣ tn and •ti−1 ∩

•ti 6= /0 for
i = 1, . . . ,n.

4 Completed Pomset Trace

We now motivate the equivalence relation used for the rest ofthe paper by means of highlighting some
possible shortcomings of implementations one would intuitively like to avoid.

When trying to implement a synchronous Petri net by a distributed one, one of the easiest approaches
is central serialisation of the entire original net by introduction of a single new place connected with loops
to every transition, thereby vacuously fulfilling the requirement that no parallel transitions may reside
on the same location. This clearly loses parallelism. We illustrate in Figure 3 the result of applying
a slightly more intricate variant of this scheme, where every visible step of the original still exists in

1mainly structural, but with a reachability side-condition
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Figure 4: A locally deadlocking implementation of Figure 2,location borders dotted.

the implementation, to the repeated pureM . Nonetheless, this approach is intuitively not scalable, as
all decisions made concurrently in the original net are now made in sequence. In particular, the parts
of the net firinga were completely independent of those parts firingc in the specification, while being
connected trough the central place in the implementation. Such new dependencies can be detected if the
causal dependencies between events are included in the behavioural description of a net. Apart from the
obvious implications for scalability, if a Petri net is usedas an abstract description of a more concrete
system, a new dependency might enable interactions betweendifferent parts of the system the designer
did not take into account. Hence we would like to disallow such a strategy by means of the equivalence
between specification and implementation.

No such causalities are introduced by the implementation inFigure 4. There however, one of the
cycles ofa’s or c’s may spontaneously decide to commit to theb action and wait until the other does
likewise, resulting in what is essentially a local deadlock. Compared to the original net, wherea stayed
enabled untilb was fired, such behaviour is new. Trying to resolve this deadlock by adding aτ-transition
in the reverse direction would introduce a diverging computation not present in the original net.

All these deviations from the original behaviour can elegantly be captured by the causal equivalence
from [10], called completed pomset trace equivalence. It extends the pomset trace equivalence of [8] as
to detect local deadlocks, which can be regarded as unjust executions in the sense of [9].

Pomset trace equivalence is obtained by unrolling a Petri net into a process as defined by [7]. Such a
process can be understood to be an account of one particular way to decide all conflicts which occurred
while proceeding from one marking to the next. The behaviourof the net is hence a set of these processes,
covering all possible ways to decide conflicts.

Unrolling a netN intuitively proceeds as follows: The initially marked places ofN are copied into a
new netN and their correspondence to the original places recorded ina mappingπ. Then, whenever in
N a transitiont is fired, this is replayed inN by a new transition connected to places corresponding byπ
to the original preplaces oft and which are not yet connected to any other post-transition. A new place
of N is created for every token produced byt. Again all correspondences are recorded inπ. Every place
of N has thus at most one post-transition. If it has none, this place represents a token currently being
placed on the corresponding original place.

As a shorthand notation to gather these places, we introducetheendof a net.

Definition 5. Let N = (S,T,F,M0, ℓ) be a labelled net.
Theendof the net is defined asN◦ := {s∈ S| s• =∅}.

Definition 6.

A pair P= (N,π) is aprocessof a netN = (S,T,F,M0, ℓ) iff

• N= (S ,T,F,M0, �l) is a net, satisfying
– ∀s∈ S .|•s| ≤1≥ |s•|∧ s∈M0 ⇔

•s= /0
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– F is acyclic, i.e.∀x∈S ∪T.(x,x) 6∈F+,
whereF+ is the transitive closure of{(t,u) | F(t,u) > 0},

– and{t | (t,u) ∈ F

+} is finite for all u∈ T.

• π : S ∪T→ S∪T is a function withπ(S)⊆ Sandπ(T)⊆ T, satisfying

– s∈ M0 ⇔ |π−1(s)∩M0|= 1 for all s∈ S,
– π is injective onM0,
– ∀t ∈ T,s∈ S.F(s,π(t)) = |π−1(s)∩ •t|∧F(π(t),s) = |π−1(s)∩ t•|, and
– ∀t ∈ T.�l(t) = ℓ(π(t)).2

P is calledfinite if N is finite.

P is maximaliff π(N◦) X−→N. The set of all maximal processes of a netN is denoted byMP(N).
To disambiguate between a not-yet-occurred firing of a transition a and the impossibility of firing ana,
we restrict the set of processes relevant for the behavioural description to maximal processes. We thereby
obtain a just semantics in the sense of [9], i.e. a transitionwhich remained enabled infinitely long must
ultimately fire.

To abstract from theτ-actions introduced in an implementation, we extract from the maximal pro-
cesses the causal structure between the fired visible eventsin the form of a partially ordered multiset
(pomset). Formally, a pomset is an isomorphism class of a partially ordered multiset of action labels.

Definition 7.
A labelled partial orderis a structure(V,T,≤, l) where

• V is a set (ofvertices),

• T is a set (oflabels),

• ≤ ⊆V ×V is a partial order relation and

• l : V → T (the labelling function).

Two labelled partial orderso= (V,T,≤, l) ando′ = (V ′,T,≤′, l ′) areisomorphic, o≅ o′, iff there exist
a bijectionϕ : V →V ′ such that

• ∀v∈V.l(v) = l ′(ϕ(v)) and

• ∀u,v∈V.u≤ v⇔ ϕ(u)≤′ ϕ(v).

Definition 8. Let o= (V,T,≤, l) be a partial order.
Thepomsetof o is its isomorphism class[o] := {o′ | o≅ o′}.

By hiding the unobservable transitions of a process, we gaina pomset which describes causality relations
of all participating visible transitions.

Definition 9. Let P= ((S ,T,F,M0, �l),π) be a process.
Let O := {t ∈ T | �l(t) 6= τ}, i.e. the visible transitions of the process. Thevisible pomsetof P is the
pomsetVP(P) := [(O,Act,F∗∩O×O, �l∩ (O×Act))] whereF∗ is the transitive and reflexive closure
of the flow relationF.

MVP(N) := {VP(P) | P ∈ MP(N)} is the set of pomsets of all maximal processes ofN.
Using this notion we can now define completed pomset trace equivalence.

Definition 10.
Two netsN andN′ arecompleted pomset trace equivalent, N ≃CPT N′, iff MVP (N) = MVP(N′).
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Figure 5: An infinite implementation of Figure 2, constructed by taking every maximal process and
initially choosing one, location borders dotted.

5 Impossibility

As completed pomset trace equivalence is a very linear-timeequivalence, it disregards the decision struc-
ture of a system and an implementation like the one of Figure 5, which simply provides a separate branch
for each possible maximal process of the original net, wouldbe fully satisfactory. In practice though,
such an infinite implementation is unwieldy to say the least.If however infinite implementations are
ruled out, our main result shows that no valid implementation of the repeated pureM of Figure 2 exists.

Before we consider this main theorem of the paper, let us concentrate on two auxiliary lemmata.
The first states that the careful introduction of aτ-transition before an arbitrary transition of a net, as
described below, does not significantly influence the properties of that net.

Lemma 1. Let N= (S,T,F,M0, ℓ) be a finite, 1-safe, distributed net with the distribution function D. Let
t ∈ T.
The net N′ = (S′,T ′,F ′,M0, ℓ

′) with
• S′ = S∪{st},

• T ′ = T ∪{τt},

• F ′ = (F \ (S× •t))∪{(s,τt) | s∈ •t}∪{(τt ,st),(st , t)}, and

• ℓ′(x) =

{

τ if x = τt

ℓ(x) otherwise

is finite, 1-safe, distributed and completed pomset trace equivalent to N.

Proof. (Sketch)
N′ is finite as only two new elements were introduced.

N′ is completed pomset trace equivalent toN. Given a process(N,π) of N, a process ofN′ can be
constructed by refining inN every transitionu in the same manner asπ(u) was inN. For the reverse
direction, note that in every maximal processes ofN′, π(u) = t =⇒ π(•u) = {st}∧π(•st) = {τt}. By

2While ℓ and�l look nearly identical, the authors see no problem in that, given the close correspondence.
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fusingu, •u, and••u into a single transitionv wheneverπ(u) = t and setting the process mapping ofv to
t, a maximal process ofN′ can be transformed into a maximal process ofN.

For the same reason,N′ is also 1-safe.

N′ is distributed with the distribution functionD′(x) :=

{

D(t) if x= st ∨x= τt

D(x) otherwise
. The places in•τt are

onD(t) =D′(τt). D′(st) =D(t) =D′(t). Hence all transitions are on the same location as their preplaces.
No new parallelism is introduced, as a parallel firing of either τt or t with some other transitionu can
only occur ift andu could already fire in parallel inN.

Next we show, that if a marking is reached twice during an execution, the dependencies of all tokens
consumed and produced by a transition firing in such a cycle are equal.

Lemma 2. Let N= (S,T,F,M0, ℓ) be a finite, 1-safe net. Let ts, ts+1, . . . , te−1, te ∈ T be a sequence of
transitions leading from a reachable marking Mbaseto the same, i.e. Mbase

{ts}−−→ ·· ·
{te}−−→ Mbase.

Then every ti produced tokens that were dependent on the same labels as thetokens on its preplaces.

Proof. Assume the opposite, i.e. there is ati for s≤ i ≤ e such thatti consumed anL-independent
token from one of its preplaces (for someL ⊆ Act), but produced noL-independent tokens. ThisL-
independent token needs to be replaced to again reachMbase. However the replacement token needs to
beL-independent as otherwise a dependency marking different fromMbasewould be reached. This token
can thus not depend on any of the tokens produced byti, as it would then not beL-independent. In other
words, hadti not fired, a newL-independent token could also have been produced on its preplaces, i.e.
N would not be 1-safe, violating the assumptions. Hence no such ti can be fired, or equivalently, everyti
produced tokens that were dependent on the same labels as thetokens on its preplaces (which hence all
have the same dependencies).

We will now show that, given an arbitrary finite, 1-safe net, it is not possible in general to find a finite, 1-
safe, and distributed net which is completed pomset trace equivalent to the original. As a counterexample,
consider the repeated pureM of Figure 2. It is a simple net allowing to perform several transitions ofa
andc in parallel, and terminating with a single transitionb. The main argument of the following proof
proceeds as follows: To perform an arbitrary number ofa andc-transitions within a finite net there has
to be a loop. To terminate withb the process has to escape from that loop by disabling all transitions
leading toa or c. Therefore either a single token is consumed that is dependent on a as well as onc,
or two different tokens – onea-dependent and onec-dependent – are consumed. In the first case an
additional iteration of the loop results in an additional causal dependency, i.e., in a causal dependency
betweena andc. In the second case the net is not distributed in the sense of Definition 4.

Theorem 5.1.
It is in general impossible to find for a finite, 1-safe net a distributed, completed pomset trace equivalent,
finite, 1-safe net.

Proof. Via the counterexample given in Figure 2. Suppose a finite, 1-safe, distributed netNimpl, which
is completed pomset trace equivalent to the net of Figure 2, would exist. By refining everyb-labelled
transition inNimpl into two transitions in the manner of Lemma 1, a new netN=(S,T,F,M0, ℓ) is derived.
By Lemma 1 this new net is finite, 1-safe, distributed and completed pomset trace equivalent to the net
in Figure 2 sinceNimpl is.

N has|S| places and 3 different labels, every place can hold either notoken, or a token dependent
on any possible combination of the three labels. SinceN is finite so is|S|. HenceN has at most 9|S|
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reachable dependency markings. Letm := 9|S|. N is able to fire(ac)mb without any step containing
more than a single transition since the net of Figure 2 is and the two are assumed to be completed
pomset trace equivalent. LetG1,G2, . . .Gn be the steps fired while doing so.|Gi| = 1 for all i. In the
course of firing that sequence, at least one dependency marking is bound to be reached twice. Of all
those dependency markings which occur twice, we take the oneoccurring last while firing(ac)mb and
call it Mbase. Let Gs,Gs+1, . . . ,Ge−1,Ge be a sequence of steps between two occurrences ofMbase, i.e.
M0×{∅}

G1−→
G2−→ ·· ·Mbase

Gs−→ ·· ·
Ge−→ Mbase· · ·

Gn−→.
Using Lemma 2 the transitions of the stepsGs to Ge can be partitioned into subsetsTX based on

the dependencies of the tokens they produced and consumed. AsetTX includes all transitions produc-
ing X-dependent, Act\X-independent tokens. By firingGs∩T{a},Gs+1∩T{a}, . . . ,Ge∩T{a} (skipping
empty steps) repeatedly,Mbase

am

=⇒. By firing Gs∩T{c},Gs+1∩T{c}, . . . ,Ge∩T{c} (skipping empty steps)
repeatedly,Mbase

cm

=⇒.
We now search for the marking, where the decision to fireb is made.
Assume a reachable markingM′′ of N with M′′ am

=⇒. If M′′ 6
cm

=⇒ this holds for allM′′′ reachable from
M′′ sincec cannot be enabled using tokens produced by a transition labelled a or b. Otherwise there
would exist a pomsets ofN in which ac is causally dependent on ana or b. Such a pomset however does
not exist for the net of Figure 2 thereby violating the assumption of completed pomset trace equivalence.
If howeverc is not re-enabled afterM′′ a maximal process including finitely manyc but infinitely many
a’s can be produced also leading to a pomset not present in the net of Figure 2. The same argument can
be applied with the rôles ofa andc reversed, henceM′′ am

=⇒ iff M′′ cm

=⇒.
We start fromMbase and start to fire the stepsGs, Gs+1, . . . ,Gn until am cannot be fired any more

for the first time. This step always exists as afterb no furthera’s or c’s may be fired. Call the single
transition in that steptb. The marking right before that transition fired, we callM, the one right after it
M′. Not onlyM

am

=⇒ but alsoM
cm

=⇒ and not onlyM′ 6
am

=⇒ but alsoM′ 6
cm

=⇒, as bothM andM′ are reachable
markings.

tb is not itself labelledb, as the refined net has aτ-transition before theb, and once a token resides on
the intermediate place, noa-transitions can be fired any more, as otherwise a pomset where ana which
is not a causal predecessor to ab would be produced, again not existing for the net of Figure 2.

To disable the traceam, the transitiontb needed to consume a token. Iftb had not fired, someGi ∩
T{a}, s≤ i ≤ e could have consumed that token, hence that token must bea-dependent,c-independent.
Similarly, tb must have consumed a token which could have led tocm. This token needs to bec-dependent,
a-independent. Hencetb has at least two preplaces, which in turn are also preplaces to two different
transitions, call themta and tc, which then lead toam and cm respectively.3 As they have common
preplacesta, tb andtc are on the same location.

FromM the net can fiream consuming onlya-dependent,c-independent tokens. It can also firecm

consuming onlyc-dependent,a-independent tokens.
Hence there is a sequence of steps leading fromM to a marking whereta is enabled, yet onlya-

dependent,c-independent tokens have been removed or added. Similarly there is a firing sequence
leading fromM to a marking wheretc is enabled, yet onlyc-dependent,a-independent tokens have
been removed or added. As they change disjunct sets of tokens, these two firing sequences can be
concatenated, thereby leading to a marking whereta andtc are concurrently enabled, yet they are on the
same location, thereby violating the implementation requirements.

Note that the self-loops of the counterexample are not critical to the success of the proof.

3The removal of the token leading toam and the one leading tocm must indeed be done by a single transitiontb as only a
single transition was fired betweenM andM′ and both traces were possible inM but impossible inM′.
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This paper only considered 1-safe nets as possible implementations. We conjecture however, that the
proof of Theorem 5.1 can be extended to non-safe nets as well,as from a place where tokens of different
dependency mix, a transition can always choose the most-dependent token. In particular a transition
intended to produce independent tokens cannot have such a place as a preplace. Hence every part of
the net providing independent tokens can do so without depending on firings of labelled transitions.
The number of independent tokens produced on a place where a labelled transition consumes them is
thus either finite over every run of the system, or unbounded even without any labelled transition ever
firing. In both cases that place is unsuitable for disabling apotentially infinitely often occurring loop. If
only finitely many tokens are produced, the loop can no longerhappen infinitely often, if an unbounded
number of tokens can be produced, no disabling can be guaranteed.

6 Conclusion

A review of existing literature in the related area can be found in [4], nonetheless we wish to refer the
reader also to [5], where instead of requiring the equivalence between specification and implementa-
tion to preserve parallelism, more structural resemblanceof the implementation to the specification is
required.

A paper not covered earlier is [1], where an algorithm for theautomated synthesis of distributed
implementations of protocols is presented. The notion of distributed Petri nets employed therein differs
from ours by not requiring formally that no parallelism may occur on the same location. The authors
however finally generate a finite automaton for each location, again serialising all actions on a single lo-
cation. In contrast to the present paper and similar to [5], the authors start with a user-supplied map from
events to locations, and answer the concrete problem of whether that specific distribution is realisable or
not instead of requiring the maximal possible parallelism to be realised.

Comparing the proof of Theorem 5.1 with the proof in [4] we observe that the counterexample in
both proofs is based on two conflicts overlapping by a transition, i.e., on what is therein called a fully
reachable pureM . In the synchronous setting such an overlapping conflict is solved by the simultaneous
removal of tokens on different places in the preset. In an asynchronous setting these two conflicts have
to be distributed over at least two locations. Intuitively,the problem with such a distribution is that it
prevents the simultaneously solution of the original overlapping conflicts. Instead these two conflicts
have to be solved in some order. This order must, as done within the encoding presented in [10], be
enforced by the encoding, leading to additional causal dependencies.

The present paper adds another patch to the emerging map of the separation plane between those
equivalences from the spectrum of behavioural equivalences which allow asynchronous implementation
in general and those which do not. In [4] we showed that Petri nets cannot in general be implemented
up to step readiness equivalence, thereby giving an upper bound for distributability along the branching-
time dimension. The present paper provided an upper bound onthe dimension of causality. We did not
formally proof that this bound is tight, and one might imagine that a behavioural equivalence closer to
the notion of dependency markings exists. However, we were unable to find an equivalence which is
sensitive to the local deadlock problem outlined in Figure 4and is not based on processes. The imple-
mentation of [10] can serve as a lower bound on both dimensions. It would be interesting to answer the
implementability question for systems which feature real-valued time, thereby enabling timeout detec-
tion and simultaneous action without co-locality.

That the observed effects are not peculiarities of the Petrinet model of systems but a reality of
asynchronous systems in general is underlined by the existence of an companion paper [6], giving a
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result similar to the one achieved here in the setting of the asynchronousπ-calculus.
A closer look on the proof in [6] reveals that this proof depends on counterexamples that are so called

symmetric networks including mixed choices in a similar wayas our result depends on counterexamples
including a pureM . A symmetric network – for instanceR= a+ b+ b.X | b+ a+ a.X in the second
part of the proof – consists of some parallel processes that differ only due to some permutation of names.
In combination with mixed choice, i.e., a choice between input as well as output capabilities, symmetric
networks result in conflicting steps on different links. Hence in both cases the counterexamples refer to
some situation in the synchronous setting in which there aretwo distinct but conflicting steps. To solve
this conflict two simultaneous activities are necessary – incase of Petri nets two tokens are removed
simultaneously and in case of theπ-calculus two sums are reduced simultaneously in one step. In the
asynchronous setting this simultaneous solution has to be serialised by some kind of lock. It blocks
the enabling of the asynchronous implementations of sourcesteps, such that no two implementations
of conflicting source steps are enabled concurrently. In both formalisms, Petri nets and theπ-calculus,
it is this temporally blocking of the implementation of source steps, necessary to avoid deadlock or
divergence in case of conflicting source steps, that leads toadditional causal dependencies.

Apart from this apparent similarity however, much of the relation between the two results remains
mysterious to us. To begin with, the requirements imposed onPetri net implementations andπ-calculus
implementations take wildly different forms. Additionally, in contrast to theπ-calculus result, the present
paper connected implementation and original by means of behaviour only without any reference to the
system structure. Theπ-calculus result on the other hand had no need to give specialattention to infinite
implementations. Finally, we also have no explanation for why the difference in expressive power (the
π-calculus is turing-complete) should not make a differencefor results such as this. We hope to answer
some of these questions in future work.

The question up to which behavioural equivalencegeneralPetri nets are implementable can also be
reversed into the question what properties or substructures of a Petri net make it unimplementable. One
problematic structure for causal equivalences, identifiedin this paper, is the net of Figure 2, possibly
with a more elaborate route froma andc back to the marking enabling all three transitions. We did not
prove that no fundamentally different problematic structures exists, but we conjecture that this is indeed
the case.
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