122 research outputs found

    Weekly Versus Monthly Testosterone Administration On Fast and Slow Skeletal Muscle Fibers in Older Adult Males

    Get PDF
    Context: In older adults, loss of mobility due to sarcopenia is exacerbated in men with low serum T. T replacement therapy is known to increase muscle mass and strength, but the effect of weekly (WK) vs monthly (MO) administration on specific fiber types is unknown. Objective: To determine the efficacy of WK vs MO T replacement on the size and functional capacity of individual fast and slow skeletal muscle fiber types. Design, Setting, and Patients: Subjects were randomized into a 5-month, double-blind, placebo-controlled trial. All subjects (ages, 61–71 y) were community-dwelling men who had T levels \u3c 500 ng/dL. Intervention: Subjects were dosed weekly for 5 months, receiving continuous T (WK, n = 5; 100 mg T enanthate, im injection), monthly cycled T (MO, n = 7; alternating months of T and placebo), or placebo (n = 7). Muscle biopsies of the vastus lateralis were obtained before and after treatment. Main Outcome Measures: Main outcomes for individual slow and fast fibers included fiber diameter, peak force (P0), rate of tension development, maximal shortening velocity, peak power, and Ca2+ sensitivity. Results: Both treatments increased fiber diameter and peak power, with WK treatment 5-fold more effective than MO in increasing type I fiber P0. WK effects on fiber diameter and force were 1.5-fold higher in slow fibers compared to fast fibers. In fast type II fibers, diameter and P0 increased similarly between treatments. The increased power was entirely due to increased fiber size and force. Conclusions: In conclusion, T replacement effects were fiber-type dependent, restricted to increases in cell size, P0, and peak power, and dependent on the paradigm selected (WK vs MO)

    Microfluidic Platform for the Elastic Characterization of Mouse Submandibular Glands by Atomic Force Microscopy

    Get PDF
    The ability to characterize the microscale mechanical properties of biological materials has the potential for great utility in the field of tissue engineering. The development and morphogenesis of mammalian tissues are known to be guided in part by mechanical stimuli received from the local environment, and tissues frequently develop to match the physical characteristics (i.e., elasticity) of their environment. Quantification of these material properties at the microscale may provide valuable information to guide researchers. Presented here is a microfluidic platform for the non-destructive ex vivo microscale mechanical characterization of mammalian tissue samples by atomic force microscopy (AFM). The device was designed to physically hold a tissue sample in a dynamically controllable fluid environment while allowing access by an AFM probe operating in force spectroscopy mode to perform mechanical testing. Results of measurements performed on mouse submandibular gland samples demonstrate the ability of the analysis platform to quantify sample elasticity at the microscale, and observe chemically-induced changes in elasticity

    Altered hippocampus synaptic function in selenoprotein P deficient mice

    Get PDF
    Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS

    Applications of deep convolutional neural networks to digitized natural history collections

    Get PDF
    Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools

    Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration

    Get PDF
    The vast majority of Alzheimer’s disease (AD) cases are late-onset with progressive synapse loss and neurodegeneration. Although the amyloid hypothesis has generated great insights into the disease mechanism, several lines of evidence indicate that other risk factors might precondition the brain to amyloid toxicity. Here, we show that the deletion of a major lipoprotein receptor, LRP1, in forebrain neurons in mice leads to a global defect in brain lipid metabolism characterized by decreased brain levels of cholesterol, sulfatide, galactosylceramide and triglyceride. These lipid deficits correlate with progressive, age-dependent dendritic spine degeneration, synapse loss, neuroinflammation, memory loss, and eventual neurodegeneration. We further show that the levels of glutamate receptor subunits NMDAR1 and GluR1 are selectively reduced in LRP1 forebrain knockout mice and in LRP1 knockdown neurons, which is partially rescued by restoring neuronal cholesterol. Together, these studies support a critical role for LRP1 in maintaining brain lipid homeostasis and associated synaptic and neuronal integrity, and provide important insights into the pathophysiological mechanisms in AD

    Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman Syndrome

    Get PDF
    Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr286 and Thr305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients

    Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden

    Get PDF
    Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.http://deepblue.lib.umich.edu/bitstream/2027.42/78314/1/1750-1326-5-45.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/2/1750-1326-5-45.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/3/1750-1326-5-45-S1.PDFPeer Reviewe

    Risk factors common to leading eye health conditions and major non-communicable diseases: a rapid review and commentary

    Get PDF
    Background: To gain an understanding of the intersection of risk factors between the most prevalent eye health conditions that are associated with vision impairment and non-communicable diseases (NCDs). Methods: A series of rapid reviews of reviews reporting on non-modifiable risk factors, age and sex, and modifiable risk factors, including social determinants, were conducted for five common eye health conditions that are the leading causes of vision impairment globally (refractive error including uncorrected refractive error, cataract, age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy) and five prevalent NCDs (cancer, cardiovascular disease, chronic respiratory disease, dementia, and depressive disorders). Articles published within approximately 5 years to the end of 2019 were identified through expert recommendation, PubMED, Ovid Medline, the Lancet Global Burden of Disease series, the International Agency for Research on Cancer and World Cancer Research Fund.    Results: Of 9,213 records identified, 320 records were eligible. Eye health conditions and NCDs share many risk factors. Increased age was found to be the most common shared risk factor, associated with increased risks of AMD, cataract, diabetic retinopathy, glaucoma, refractive error, cancer, cardiovascular disease, chronic obstructive pulmonary disease, and dementia. Other shared risk factors included smoking, obesity, alcohol consumption (mixed results), and physical activity was protective, though limited evidence was found for eye conditions. Social determinants are well documented as risk factors for NCDs. Conclusion: There is substantial overlap in common established risk factors for the most frequent vision impairing eye conditions and leading NCDs. Increasing efforts should be made to integrate preventative and risk reduction interventions to improve health, with greatest shared benefits for initiatives which aim to reduce smoking, improve diet, and promote physical activity.</ns4:p

    Risk factors common to leading eye health conditions and major non-communicable diseases: a rapid review and commentary

    Get PDF
    Background: To gain an understanding of the intersection of risk factors between the most prevalent eye health conditions that are associated with vision impairment and non-communicable diseases (NCDs). Methods: A series of rapid reviews of reviews reporting on non-modifiable risk factors, age and sex, and modifiable risk factors, including social determinants, were conducted for five common eye health conditions that are the leading causes of vision impairment globally (refractive error including uncorrected refractive error, cataract, age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy) and five prevalent NCDs (cancer, cardiovascular disease, chronic respiratory disease, dementia, and depressive disorders). Articles published within approximately 5 years to the end of 2019 were identified through expert recommendation, PubMED, Ovid Medline, the Lancet Global Burden of Disease series, the International Agency for Research on Cancer and World Cancer Research Fund.    Results: Of 9,213 records identified, 320 records were eligible. Eye health conditions and NCDs share many risk factors. Increased age was found to be the most common shared risk factor, associated with increased risks of AMD, cataract, diabetic retinopathy, glaucoma, refractive error, cancer, cardiovascular disease, chronic obstructive pulmonary disease, and dementia. Other shared risk factors included smoking, obesity, alcohol consumption (mixed results), and physical activity was protective, though limited evidence was found for eye conditions. Social determinants are well documented as risk factors for NCDs. Conclusion: There is substantial overlap in common established risk factors for the most frequent vision impairing eye conditions and leading NCDs. Increasing efforts should be made to integrate preventative and risk reduction interventions to improve health, with greatest shared benefits for initiatives which aim to reduce smoking, improve diet, and promote physical activity.</ns3:p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore