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Abstract

Natural  history  collections  contain  data  that  are  critical  for  many  scientific  endeavors.
Recent efforts in mass digitization are generating large datasets from these collections that
can provide unprecedented insight. Here, we present examples of how deep convolutional
neural  networks  can be applied  in  analyses of  imaged herbarium specimens.  We first
demonstrate that a convolutional neural  network can detect mercury-stained specimens
across a collection with 90% accuracy. We then show that such a network can correctly
distinguish two morphologically similar plant families 96% of the time. Discarding the most
challenging specimen images increases accuracy to 94% and 99%, respectively. These
results highlight the importance of mass digitization and deep learning approaches and
reveal how they can together deliver powerful new investigative tools.
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Introduction

Deep learning can greatly surpass conventional machine learning by incorporating multi-
layered neural networks capable of processing natural data in their raw form (LeCun et al.
2015).  Deep convolutional  neural  networks (CNNs) are especially  well  suited to  image
classification and may even achieve superhuman performance (He et al. 2015). Already,
CNNs are playing important roles in healthcare, speech recognition, and driverless cars.
Natural history collections (NHCs) also benefit  society in numerous ways, most notably
supporting  public  health,  safety,  and agriculture  (Suarez and Tsutsui  2004).  NHCs are
likewise fundamental to understanding biodiversity and they underlie studies of evolution,
habitat loss, biological invasion, and climate change. The billions of specimens in NHCs
could undoubtedly  provide even greater  social  and scientific insight,  but  their  data  are
typically accessible only to researchers who can physically visit repositories. Digitization
efforts obviate the need for many types of in-person data gathering (Beaman and Cellinese
2012)  and  remarkable  progress  is  now  being  made  in  compiling  specimen  data  and
images  (Barkworth  and  Murrell  2012).  Coupling  these  data  with  the  classification
capabilities of CNNs will unlock more of the rich potential of NHCs.

Deep learning might  ultimately  be leveraged in  many ways for  many different  types of
NHCs. Here,  we focus on the digitized portion (currently  1.2 million specimens) of  the
United States National Herbarium. Our analyses, focused on the detection of specimens
previously treated with mercury and the discrimination of superficially similar plant families,
are complementary to those recently published on species identification (Carranza-Rojas et
al. 2017) and further demonstrate how CNNs might be used to learn more from NHCs.

Materials and methods

To assess the potential of using CNNs to classify specimen images obtained from NHCs,
we assembled two distinct datasets. Both datasets contained two image categories, with
an approximately equal number of images in each category. Some specimen images were
obtained  with  a  traditional  light  box,  but  most  were  acquired  via  a  conveyor  system
managed by the Smithsonian Digitization Program Office.

In the past, mercuric chloride was sometimes used by collectors or repositories to prevent
insect damage to specimens. Unfortunately, this substance is also toxic to humans and
knowing  the  number  and  location(s)  of  contaminated  specimens  in  a  collection  is
important. One can test for mercury vapor in herbarium cabinets (Hawks et al. 2004), but it
is also possible to visualize contamination as chemical reactions of mercury with mounting
paper and air leave a distinctive stain (images of unstained and stained specimens are
provided  in  Fig.  1).  Such  staining,  which  can  vary  in  severity  and  location,  is  rarely
recorded in specimen metadata. Therefore, to assess the utility of using deep learning to
identify  mercury-contaminated  specimens,  we  manually  assembled  a  set  of  7,777
unstained (https://doi.org/10.6084/m9.figshare.5423098) and 7,777 stained (https://doi.org/
10.6084/m9.figshare.5423083) images.
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The automated identification of specimens could make a valuable contribution to biological
research  (Gaston  and  O'Neill  2004).  However,  in  botany,  applications  to  date  have
generally been restricted to living plants and almost all studies have employed conventional
machine  learning  approaches  requiring  considerable  preprocessing  (e.g.,  Unger  et  al.
2016).  Deep  learning  approaches  offer  significant  advantages  and  may  bring  greatly
improved accuracy (Carranza-Rojas et al. 2017). To evaluate the capabilities of CNNs to
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Figure 1. 

Sample herbarium specimen images.
a: Unstained clubmoss. 
b: Unstained spikemoss. 
c: Stained clubmoss. 
d: Stained spikemoss. 
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discriminate among plant taxa in our herbarium, we assembled a data set focused on two
closely related families: clubmosses (Lycopodiaceae) and spikemosses (Selaginellaceae).
Although these two families differ in microscopic features (clubmosses are homosporous
and have nonligulate leaves, whereas spikemosses are heterosporous and have ligulate
leaves), they are superficially similar (Fig. 1). Our dataset included 9,276 clubmoss (https://
doi.org/10.6084/m9.figshare.5423176) and  9,113  spikemoss  ( https://doi.org/  10.6084/
m9.figshare.5423182) images.

CNNs were built  in  Mathematica version 11.1 (Wolfram Research Inc.)  and trained on
NVIDIA K80 GPUs.  For  each dataset  (stained/unstained and clubmoss/spikemoss),  we
randomly partitioned the images into three non-overlapping sets each time before training
the network: 70% were used for training the model; 20% were used for validation; and 10%
were reserved as our test dataset (i.e., the images used to train the CNNs were not used to
assess  their  accuracy).  We  resized  the  color  images  to  256×256  pixels,  creating  a
3×256×256 tensor for our input layer (the first dimension separated by RGB values), and
explored the performance of a variety of CNNs for each dataset. For the stained/unstained
dataset, the best CNN included four convolutional and four pooling layers (Table 1; https://
doi.org/10.6084/m9.figshare.5501743). For the clubmoss/spikemoss dataset, the best CNN
included two convolutional layers and two pooling layers (Table 2; https://doi.org/10.6084/
m9.figshare.5501716). The code used to define and train these CNNs can be found in our
Mathematica notebooks (Suppl. materials 1, 3, 2, 4).

Layer Type Shape

Input 3-tensor 3×256×256

ConvolutionLayer 3-tensor 16×252×252

BatchNormalizationLayer 3-tensor 16×252×252

Ramp (ReLU) 3-tensor 16×252×252

PoolingLayer 3-tensor 16×126×126

ConvolutionLayer 3-tensor 32×122×122

BatchNormalizationLayer 3-tensor 32×122×122

Ramp (ReLU) 3-tensor 32×122×122

PoolingLayer 3-tensor 32×61×61

ConvolutionLayer 3-tensor 64×57×57

BatchNormalizationLayer 3-tensor 64×57×57

Ramp (ReLU) 3-tensor 64×57×57

PoolingLayer 3-tensor 64×28×28

Table 1. 

Constitutive layers and tensor/vector shapes for the unstained/stained CNN.
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ConvolutionLayer 3-tensor 48×26×26

BatchNormalizationLayer 3-tensor 48×26×26

Ramp (ReLU) 3-tensor 48×26×26

PoolingLayer 3-tensor 48×13×13

FlattenLayer vector 8112

DropoutLayer vector 8112

LinearLayer vector 500

Ramp (ReLU) vector 500

LinearLayer vector 2

SoftmaxLayer vector 2

Output class

Layer Type Shape 

Input 3-tensor 3×256×256

ConvolutionLayer 3-tensor 10×252×252

BatchNormalizationLayer 3-tensor 10×252×252

Ramp (ReLU) 3-tensor 10×252×252

PoolingLayer 3-tensor 10×126×126

ConvolutionLayer 3-tensor 40×122×122

BatchNormalizationLayer 3-tensor 40×122×122

Ramp (ReLU) 3-tensor 40×122×122

PoolingLayer 3-tensor 40×61×61

FlattenLayer vector 148840

DropoutLayer vector 148840

LinearLayer vector 500

Ramp (ReLU) vector 500

LinearLayer vector 2

SoftmaxLayer vector 2

Output class

Table 2. 

Constitutive layers and tensor/vector shapes for the clubmoss/spikemoss CNN.
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Results and discussion

Our  best  performing  CNNs  were  remarkably  effective  in  distinguishing  stained  from
unstained specimens, as well as clubmosses from spikemosses (Fig. 2). Images withheld
from  training  were  correctly  identified  90%  and  96%  of  the  time,  respectively.
Misclassifications were roughly symmetrical.  If  the most  difficult  images to classify  (the
10%  with  classification  probabilities  closest  to  0.5)  were  removed  from  the  test  set,
accuracy jumped to 94% and 99%, respectively.

a b
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Figure 2. 

Results of our CNN analyses of test herbarium specimen images.
a: Unstained/stained confusion matrix. 
b: Clubmoss/spikemoss confusion matrix. 
c: Unstained/stained probability distribution. 
d: Clubmoss/spikemoss probability distribution. 
e: Unstained/stained rejection plot. 
f: Clubmoss/spikemoss rejection plot. 
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The present  study  demonstrates  two different  ways  in  which  CNNs can be  applied  to
NHCs.  The  mercury  staining  analysis  has practical  implications  for  collections
management, while the analysis centered on distinguishing families is interesting from both
collections management  and research perspectives.  Our stained vs.  unstained network
could  theoretically  be  applied  to  digitized  specimens  in  other  herbaria  to  help  identify
mercury hotspots for potential remediation. Likewise, our family discrimination network has
the potential to be further developed into a universal tool to identify unknowns or to flag
specimens in need of additional study, in the United States National Herbarium and in other
NHCs.

Our  work  highlights  the  importance  of  proper  metadata  curation  when  approaching  a
machine learning project. Assembling the training dataset for the mercury analysis required
many person  hours  to  visually  inspect  images  for  staining,  whereas  clubmoss  and
spikemoss images were easily compiled using specimen metadata alone. Nascent efforts
in digitization in NHCs must carefully consider the acquisition and curation of metadata
because it affects how quickly machine learning tools can be applied to digitized museum
collections.
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