939 research outputs found

    Expression of MHC II genes

    Full text link
    Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques

    Get PDF
    AbstractBackground The primate lentiviruses, human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV), encode a conserved accessory gene product, Nef. In vivo, Nef is important for the maintenance of high virus loads and progression to AIDS in SIV-infected adult rhesus macaques. In tissue culture cells expressing Nef, this viral protein interacts with a cellular serine kinase, designated Nef-associated kinase.Results This study identifies the Nef-associated kinase as a member of the p21-activated kinase (PAK) family of kinases and investigates the role of this Nef-associated kinase in vivo. Mutants of Nef that do not associate with the cellular kinase are unable to activate the PAK-related kinase in infected cells. To determine the role of cellular kinase association in viral pathogenesis, macaques were infected with SIV containing point-mutations in Nef that block PAK activation. Virus recovered at early time points after inoculation with mutant virus was found to have reverted to prototype Nef function and sequence. Reversion of the kinase-negative mutant to a kinase-positive genotype in macaques infected with the mutant virus preceded the induction of high virus loads and disease progression.Conclusions Nef associates with and activates a PAK-related kinase in lymphocytes infected in vitro. Moreover, the Nef-mediated activation of a PAK-related kinase correlates with the induction of high virus loads and the development of AIDS in the infected host. These findings reveal that there is a strong selective pressure in vivo for the interaction between Nef and the PAK-related kinase

    Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) transcriptional transactivator (Tat) recruits the positive transcription elongation factor b (P-TEFb) to the viral promoter. Consisting of cyclin dependent kinase 9 (Cdk9) and cyclin T1, P-TEFb phosphorylates RNA polymerase II and the negative transcription elongation factor to stimulate the elongation of HIV-1 genes. A major fraction of nuclear P-TEFb is sequestered into a transcriptionally inactive 7SK small nuclear ribonucleoprotein (snRNP) by the coordinated actions of the 7SK small nuclear RNA (snRNA) and hexamethylene bisacetamide (HMBA) induced protein 1 (HEXIM1). In this study, we demonstrate that Tat prevents the formation of and also releases P-TEFb from the 7SK snRNP in vitro and in vivo. This ability of Tat depends on the integrity of its N-terminal activation domain and stems from the high affinity interaction between Tat and cyclin T1, which allows Tat to directly displace HEXIM1 from cyclin T1. Furthermore, we find that in contrast to the Tat-independent activation of the HIV-1 promoter, Tat-dependent HIV-1 transcription is largely insensitive to the inhibition by HEXIM1. Finally, primary blood lymphocytes display a reduced amount of the endogenous 7SK snRNP upon HIV-1 infection. All these data are consistent with the model that Tat not only recruits but also increases the active pool of P-TEFb for efficient HIV-1 transcription

    Affinity enrichment and functional characterization of TRAX1, a novel transcription activator and X1-sequence-binding protein of HLA-DRA.

    Get PDF
    The promoters of all class II major histocompatibility (MHC) genes contain a positive regulatory motif, the X element. The DNA-binding proteins specific for this element are presumed to play a critical role in gene expression, although there is a paucity of functional studies supporting this role. In this study, the X-box-binding proteins of HLA-DRA were affinity purified from HeLa nuclear extracts. Fractions 46 to 48 contained an X-box-binding activity and were determined by electrophoretic mobility shift assays to be specific for the X1 element. This X1 sequence-binding-protein, transcriptional activator X1 (TRAX1), was shown to be a specific transcriptional activator of the HLA-DRA promoter in an in vitro transcription assay. By UV cross-linking analysis, the approximate molecular mass of TRAX1 including the bound DNA was determined to be 40 kDa. When the TRAX1 complex was incubated with antibodies against a known recombinant X-box-binding protein, RFX1, and tested in electrophoretic mobility shift assays, TRAX1 was neither shifted nor blocked by the antibody. Further analysis with methylation interference showed that TRAX1 bound to the 5' end of the X1 sequence at -109 and -108 and created hypersensitive sites at -114, -113, and -97. This methylation interference pattern is distinct from those of the known X1-binding proteins RFX1, RFX, NF-Xc, and NF-X. Taken together, our results indicate that TRAX1 is a novel X1-sequence-binding protein and transcription activator of HLA-DRA

    Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    Get PDF
    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease

    Binding and cooperative interactions between two B cell-specific transcriptional coactivators.

    Full text link
    International audienceThe class II transactivator (CIITA) and B cell octamer-binding protein 1/octamer-binding factor 1/Oct coactivator from B cells (Bob1/OBF-1/OCA-B) represent two B cell-specific transcriptional coactivators. CIITA and Bob1 interact with proteins that bind to conserved upstream sequences in promoters of class II major histocompatibility genes and octamer-binding transcription factors Oct-1 and Oct-2, respectively. Both CIITA and Bob1 increase the expression from the DRA promoter, which is a prototypic class II promoter. Moreover, in the presence of CIITA, interactions between class II promoters and Bob1 are independent of the octamer-binding site. Using in vivo and in vitro binding assays, we confirm that Bob1 binds to CIITA. Thus, CIITA not only activates the expression of class II genes but recruits another B cell-specific coactivator to increase transcriptional activity of class II promoters in B cells
    corecore