51 research outputs found

    Decision support for using mobile rapid DNA analysis at the crime scene

    Get PDF
    Mobile Rapid DNA technology is close to being incorporated into crime scene investigations, with the potential to identify a perpetrator within hours. However, the use of these techniques entails the risk of losing the sample and potential evidence, because the device not only consumes the inserted sample, it is also is less sensitive than traditional technologies used in forensic laboratories. Scene of Crime Officers (SoCOs) therefore will face a ‘time/success rate trade-off’ issue when making a decision to apply this technology. In this study we designed and experimentally tested a Decision Support System (DSS) for the use of Rapid DNA technologies based on Rational Decision Theory (RDT). In a vignette study, where SoCOs had to decide on the use of a Rapid DNA analysis device, participating SoCOs were assigned to either the control group (making decisions under standard conditions), the Success Rate (SR) group (making decisions with additional information on DNA success rates of traces), or the DSS group (making decisions supported by introduction to RDT, including information on DNA success rates of traces). This study provides positive evidence that a systematic approach for decision-making on using Rapid DNA analysis assists SoCOs in the decision to use the rapid device. The results demonstrated that participants using a DSS made different and more transparent decisions on the use of Rapid DNA analysis when different case characteristics were explicitly considered. In the DSS group the decision to apply Rapid DNA analysis was influenced by the factors “time pressure” and “trace characteristics” like DNA success rates. In the SR group, the decisions depended solely on the trace characteristics and in the control group the decisions did not show any systematic differences on crime type or trace characteristic. Guiding complex decisions on the use of Rapid DNA analyses with a DSS could be an important step towards the use of these devices at the crime scene

    The Accuracy of Patient-Specific Spinal Drill Guides Is Non-Inferior to Computer-Assisted Surgery:The Results of a Split-Spine Randomized Controlled Trial

    Get PDF
    In recent years, patient-specific spinal drill guides (3DPGs) have gained widespread popularity. Several studies have shown that the accuracy of screw insertion with these guides is superior to that obtained using the freehand insertion technique, but there are no studies that make a comparison with computer-assisted surgery (CAS). The aim of this study was to determine whether the accuracy of insertion of spinal screws using 3DPGs is non-inferior to insertion via CAS. A randomized controlled split-spine study was performed in which 3DPG and CAS were randomly assigned to the left or right sides of the spines of patients undergoing fixation surgery. The 3D measured accuracy of screw insertion was the primary study outcome parameter. Sixty screws inserted in 10 patients who completed the study protocol were used for the non-inferiority analysis. The non-inferiority of 3DPG was demonstrated for entry-point accuracy, as the upper margin of the 95% CI (−1.01 mm–0.49 mm) for the difference between the means did not cross the predetermined non-inferiority margin of 1 mm (p < 0.05). We also demonstrated non-inferiority of 3D angular accuracy (p < 0.05), with a 95% CI for the true difference of −2.30◦–1.35◦, not crossing the predetermined non-inferiority margin of 3◦ (p < 0.05). The results of this randomized controlled trial (RCT) showed that 3DPGs provide a non-inferior alternative to CAS in terms of screw insertion accuracy and have considerable potential as a navigational technique in spinal fixation

    Accuracy of Patient-Specific 3D-Printed Drill Guides for Pedicle and Lateral Mass Screw Insertion:An Analysis of 76 Cervical and Thoracic Screw Trajectories

    Get PDF
    STUDY DESIGN: Single-center retrospective case series. OBJECTIVE: The purpose of this study was to assess the safety and accuracy of 3D-printed individualized drill guides for pedicle and lateral mass screw insertion in the cervical and upper-thoracic region, by comparing the pre-operative 3D-surgical plan with the postoperative results. SUMMARY OF BACKGROUND DATA: Posterior spinal fusion surgery can provide rigid intervertebral fixation but screw misplacement involves a high risk of neurovascular injury. However, modern spine surgeons now have tools such as virtual surgical planning and 3D-printed drill guides to facilitate spinal screw insertion. METHODS: A total of 15 patients who underwent posterior spinal fusion surgery involving patient-specific 3D-printed drill guides were included in this study. After segmentation of bone and screws, the post-operative models were superimposed onto the preoperative surgical plan. The accuracy of the realized screw trajectories was quantified by measuring the entry point and angular deviation. RESULTS: The 3D deviation analysis showed that the entry point and angular deviation over all 76 screw trajectories were 1.40 ± 0.81 mm and 6.70 ± 3.77°, respectively. Angular deviation was significantly higher in the sagittal plane than in the axial plane (P = 0.02). All screw positions were classified as 'safe' (100%), showing no neurovascular injury, facet joint violation, or violation of the pedicle wall. CONCLUSIONS: 3D virtual planning and 3D-printed patient-specific drill guides appear to be safe and accurate for pedicle and lateral mass screw insertion in the cervical and upper-thoracic spine. The quantitative 3D deviation analyses confirmed that screw positions were accurate with respect to the 3D-surgical plan. LEVEL OF EVIDENCE: 4

    A strawman with machine learning for a brain: A response to Biedermann (2022) the strange persistence of (source) “identification” claims in forensic literature

    Get PDF
    We agree wholeheartedly with Biedermann (2022) FSI Synergy article 100222 in its criticism of research publications that treat forensic inference in source attribution as an “identification” or “individualization” task. We disagree, however, with its criticism of the use of machine learning for forensic inference. The argument it makes is a strawman argument. There is a growing body of literature on the calculation of well-calibrated likelihood ratios using machine-learning methods and relevant data, and on the validation under casework conditions of such machine-learning-based systems

    Directional turnover towards larger-ranged plants over time and across habitats

    Get PDF
    Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation

    Monitoring of species’ genetic diversity in Europe varies greatly and overlooks potential climate change impacts

    Get PDF
    Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species’ joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union’s Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity

    Identification of Srp9 as a febrile seizure susceptibility gene

    Get PDF
    Objective: Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. Methods: We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. Results: Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. Interpretation: Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE
    corecore