119 research outputs found

    An electro-responsive hydrogel for intravascular applications: an in vitro and in vivo evaluation

    Get PDF
    There is a growing interest in using hydrogels for biomedical applications, because of more favourable characteristics. Some of these hydrogels can be activated by using particular stimuli, for example electrical fields. These stimuli can change the hydrogel shape in a predefined way. It could make them capable of adaptation to patient-specific anatomy even post-implantation. This is the first paper aiming to describe in vivo studies of an electro-responsive, Pluronic F127 based hydrogel, for intravascular applications. Pluronic methacrylic acid hydrogel (PF127/MANa) was in vitro tested for its haemolytic and cytotoxic effects. Minimal invasive implantation in the carotid artery of sheep was used to evaluate its medium-term biological effects, through biochemical, macroscopic, radiographic, and microscopic evaluation. Indirect and direct testing of the material gave no indication of the haemolytic effects of the material. Determination of fibroblast viability after 24 h of incubation in an extract of the hydrogel showed no cytotoxic effects. Occlusion was obtained within 1 h following in vivo implantation. Evaluation at time of autopsy showed a persistent occlusion with no systemic effects, no signs of embolization and mild effects on the arterial wall. An important proof-of-concept was obtained showing biocompatibility and effectiveness of a pluronic based electro-responsive hydrogel for obtaining an arterial occlusion with limited biological impact. So the selected pluronic-methacrylic acid based hydrogel can be used as an endovascular occlusion device. More importantly it is the first step in further development of electro-active hydrogels for a broad range of intra-vascular applications (e.g. system to prevent endoleakage in aortic aneurysm treatment, intra-vascular drug delivery)

    Non-linear wave generation and absorption using open boundaries within DualSPHysics

    Get PDF
    The present work introduces the implementation of wave generation and wave absorption of non-linear, long-crested regular and irregular waves in the WCSPH-based (Weakly Compressible Smoothed Particle Hydrodynamics) DualSPHysics solver. Open boundaries are applied here for both wave generation and absorption. These boundaries consist of buffer zones, on which physical quantities are imposed, or extrapolated from the fluid domain using ghost nodes. Several layers of buffer particles are used to create an inlet and an outlet, where the horizontal component of the orbital velocities, surface elevation and pressure can be imposed from any external source or extrapolated from the fluid domain. This allows the creation of a numerical wave flume with a length of one wavelength. Reflections within the fluid domain are successfully mitigated using a velocity correction term at both inlet and outlet. The implementation is validated with theoretical solutions, in terms of water surface elevation, wave orbital velocities, and dynamic pressure. The model proves to be capable of propagating waves with less than 5% reflection, and RMSE errors on physical quantities lower than 4.3%. The application of open boundaries proves to be an accurate method to generate and absorb non-linear waves within a restricted domain. © 2019 Elsevier B.V

    Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials

    Get PDF
    In this study the use of heat resistant endospore-forming aerobic microorganisms of the genus Bacillus amyloliquefaciens as an active oxygen scavenger in multilayer PET bottles was evaluated. Therefore a modelsystem was developed in which Bacillus amyloliquefaciens spores were incorporated in a PET copolymer (PETG) at 220°C. The effectiveness of the OS was evaluated directly by measuring the oxygen absorption rate and indirectly by determining the viability of the incorporated spores

    A cardiovascular occlusion method based on the use of a smart hydrogel

    Get PDF
    Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels
    • …
    corecore