721 research outputs found

    Designing Reliable Communication Networks with a Genetic Algorithm using a Repair Heuristic

    Full text link
    This paper investigates GA approaches for solving the reliable communication network design problem. For solving this problem a graph with minimum cost must be found that satisfies a given network reliability constraint. To consider the additional reliability constraint different approaches are possible. We show that existing approaches using penalty functions can result in invalid solutions and are therefore not appropriate for solving this problem. To overcome these problems we present a repair heuristic, which is based on the number of spanning trees in a graph. This heuristic always generates a valid solution, which when compared to a greedy cheapest repair heuristic shows that the new approach finds better solutions with less computational effort

    A study of an iterated local search on the reliable communication networks design problem

    Get PDF
    The reliability of network topologies is an important key issue for business success. This paper investigates the reliable communication network design problem using an iterated local search (ILS) method. This paper demonstrates how the concepts of local search (LS) and iterated local search can be applied to this design problem. A new neighborhood move that finds cheaper networks without violating the reliability constraint is proposed. Empirical results show that the ILS method is more efficient than a genetic algorithm

    The prefrontal cortex and obesity: a health neuroscience perspective

    Get PDF
    The level of activity within an individual’s prefrontal cortex seems to be critical to dietary self-control and the likelihood of overconsumption and obesity. Lower activity can make individuals more vulnerable to the appeal of calorie-rich foods. Sustained overconsumption and obesity can cause changes in the prefrontal cortex that further discourage dietary self-regulation, creating a reciprocal relationship that reinforces the poor dietary choices and encourages overconsumption.https://ir.lib.uwo.ca/brainscanresearchsummaries/1000/thumbnail.jp

    Designing reliable communication networks with a genetic algorithm using a repair heuristic

    Get PDF
    This paper investigates GA approaches for solving the reliable communication network design problem. For solving this problem a graph with minimum cost must be found that satisfies a given network reliability constraint. To consider the additional reliability constraint different approaches are possible. We show that existing approaches using penalty functions can result in invalid solutions and are therefore not appropriate for solving this problem. To overcome these problems we present a repair heuristic, which is based on the number of spanning trees in a graph. This heuristic always generates a valid solution, which when compared to a greedy cheapest repair heuristic shows that the new approach finds better solutions with less computational effort.In geänderter Fassung erschienen als : Working papers / Lehrstuhl für ABWL und Wirtschaftsinformatik ; 2003,14 Mannheim: Universität Mannheim / Fakultät für Betriebswirtschaftslehre, 200

    Analyzing the actions of the Administration of Novy Vasyugan rural settlement

    Get PDF
    The paper analyzes the actions of the Administration of Novy Vasyugan rural settlement. Novy Vasyugan is a village in Tomsk oblast and an administrative center of rural settlement. The Administration is a key element of a democratic society. Every citizen deals with an administration. Nowadays it is developing and legislative branch does not work in a perfect way as its financial and economic resources are limited. The paper describes the structure of rural administration: the duties of municipal bodies, its rights. The goals and results of Novy Vasyugan municipal programs are described: socio-economic growth plan, fire safety municipal target program, energy efficiency municipal target program and antiextremism complex municipal program

    Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three <it>Pachycladon </it>species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species.</p> <p>Results</p> <p>Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins) and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase), the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases), water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase) and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis). Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not.</p> <p>Conclusions</p> <p>We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three <it>Pachycladon </it>species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study. Our results indicate that protein profiling provides a valuable tool for validating transcript profiles in studies of adaptive divergence.</p

    Arginine- but not alanine-rich carboxy-termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti

    Get PDF
    Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant-negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)-terminus, from poly-glycine to either a poly-arginine or -alanine tail. Previous studies on the type of C-terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C-termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C-terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine-rich C-terminus. However, this was not observed with K10 featuring an alanine-rich C-terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild-type and truncated forms of K10. This study demonstrates that, of the various 3' frameshift variants of KRT10, exclusively arginine-rich C-termini lead to nuclear localization of K10
    corecore