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Abstract. The reliability of network topologies is an important key
issue for business success. This paper investigates the reliable commu-
nication network design problem using an iterated local search (ILS)
method. This paper demonstrates how the concepts of local search (LS)
and iterated local search can be applied to this design problem. A new
neighborhood move that finds cheaper networks without violating the
reliability constraint is proposed. Empirical results show that the ILS
method is more efficient than a genetic algorithm.

1 Introduction

For many network and internet based IT-applications the error-free operation
of the underlying network topology is a key issue for business success. Also,
the ongoing integration of IT-systems along the value chain requires high-speed
communication networks with low failure probability. Therefore, the availability
of communication network topologies is an important factor of design. During
the designing process, the designer tries to balance the investments made in
the network with the services and benefits provided to its users. One important
service measurement of network topology is its all-terminal reliability. This is
defined as the probability that all nodes in the network will remain connected,
given the probability of success/failure for each node and link in the network [1].
The network design problem dealt with in this paper focuses on choosing those
links from a given set of communication links, which minimize the network costs
under a given network reliability constraint. The design problem itself, and the
calculation of network reliability have been proven as a NP-hard problem[2, 3]. In
the past, metaheuristics were successfully applied to the network design process
[4, 5, 6, 7, 8].

It is known that the calculation of the all-terminal reliability is the most time-
sensitive part of the evaluation of the problems solution. Most of the existing
heuristics for this problem require a considerable computational effort in order
to evaluate several solutions. For example, population based metaheuristics such
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as genetic algorithms (GA) proposed in [4, 9, 10, 8] perform a high number of re-
liability evaluations in each generation. In this paper, we investigate a random
restart local search (RRLS) and an iterated local search (ILS). Both methods
need significantly fewer fitness/reliability evaluations during the optimization
process. For the neighborhood search we define a new 1-by-2-move which min-
imizes the total network costs with respect to the reliability constraint in each
step. With the application of this local search strategy in an ILS, we are able
to overcome local optima found by a local search and converge into global op-
timal solutions. In the empirical results presented, the RRLS and the ILS are
compared to a GA using a repair heuristic. We show that an ILS finds optimal
solutions with less computational effort when compared to the GA approach.

2 Problem Definition

The work presented here investigates the reliable communication network design
(RCND) problem. The challenge is to generate network topologies that satisfy a
given reliability measurement while minimizing network costs. The design prob-
lem has been proven as NP-hard [2]. Several papers have already been published
about this problem and others like it. Dengiz et al. [9] propose a GA using a
penalty function to incorporate the reliability constraint into the fitness func-
tion. Baran and Laufer [11] build upon the work of Dengiz et al. in order to treat
bigger problem situations by using a parallel GA. In [6], Dengiz and Alabap in-
troduce a simulated annealing algorithm. In [8], Reichelt et al. propose a genetic
algorithm using a repair heuristic. Baran et al. [12] investigate topology design
by a GA with multiple objectives.

In this paper the communication network N is modeled as an undirected
simple graph G(E, V ), where E is the set of edges and V the set of vertices. Each
element of the graph (edge or vertex) represents a link or node in the network.
It is assumed that the location of each node is given, setup costs for network
nodes are not considered and that, for each possible network link lij between
node i and j, cost cij and reliability r(l) are known. We do not consider repair
of failed edges. It is proposed that nodes are perfectly reliable, and edges are
either in an operational or failed state. The failures of the edges are statistically
independent with known failure probabilities. The reliability of edge eij in G is
r(eij). A network N as a solution for the problem is represented by subgraph
GN (EN , V ) with EN ⊂ E. The objective function may be stated as:

C(N) =
|V |∑

i=1

|V |−1∑

j=i+1

cijxij → min

subject to: RAll(G) ≥ R0

(1)

where C(N) is the total cost for the network topology and cij is the cost for
a network link between node i and node j. The variable xij ∈ {0, 1} indicates
whether edge eij from G representing the network link lij exists in GN .
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For the reliability measurement we use the all-terminal reliability RAll. To
determine the all-terminal reliability RAll(GN ) we consider a set of states St =
(St1, . . . ,Stn) of the graph GN . Each state Sti represents a subgraph GNi of
GN when z edges in GN fail. A state Sti ∈ St is operational if GNi is connected.
We define Φ(Sti)=1 if Sti is operational, otherwise Φ(Sti)=0. Pr(Sti) is the
probability for state Sti. The all-terminal reliability is:

RAll(G) =
∑

Sti∈St

Φ(Sti) · Pr(Sti) (2)

The constraint for RAll(G) determines the minimum reliability requirement R0
for GN . The calculation of the all-terminal reliability has been proven as NP-hard
[3]. For calculation of network reliability the literature proposes exact algorithms
[1, 13] for networks with few edges, and Monte Carlo based estimation [14] for
large network topologies. In this paper we use a decomposition approach from
[1], and an upper bound method from [15] to calculate and estimate the all-
terminal reliability.

3 Applying an Iterated Local Search for the
Communication Network Design Problem

The concept of iterated local search is a well-known metaheuristic for combina-
torial optimization problems. A complete introduction to iterated local search
is given in [16]. This section first introduces a new neighborhood move for the
RCND problem. Afterwards an iterated local search procedure with the new
move is presented.

3.1 A 1-by-2-Neighborhood Operator

To apply a local search to a problem, one has to define a move that generates
a solution in the neighborhood N(s). In this paper we propose the 1-by-2-move
for the RCND problem. This move decreases the total cost of the network with
respect to a given reliability constraint R0. In order to generate the neighbor-
hood N(s) the move tries to delete the most costly links from the network. The
complete 1-by-2-move procedure for a given configuration s represented by GN

and an edge eij ∈ GN is shown in Figure 1.
The procedure first tries to delete the edge eij from GN . If the resulting graph

is a valid solution, the move is accepted. If the 1-by-2-move cannot construct a
valid neighbor by deleting the edge eij from GN the procedure searches for a
pair of edges that connects the vertices i and j over a vertex l using an overall
cheaper pair of edges. A reliability check ensures that the replacement of the
most cost-intensive edge by two overall cheaper edges represents a valid solution
under the given constraint. To generate the neighborhood for a solution the 1-
by-2-move is applied to all cost-intensive edges until an edge cannot be deleted
or replaced. Figure 2(a) shows a sample graph. Each edge is ranked by the edge
costs cij . The solid lines denote a subgraph GN representing a solution (network)
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procedure 1-by-2-move
input: eij , GN , G , R0

if (RAll(GN ) ≥ R0 with : EN \ {eij})
EN ← EN \ {eij}
return GN

candEdgesPair = ∅
for all ({(eik, ejl)|(eik, ejl ∈ E) ∧ (eik, ejl /∈ EN )})

if (k = l) ∧ (cij > (cik + cjl))
add {eik, ejl} to candEdgesPair

sort candEdgesPair by (cik + cjl) ascending
for {e1, e2} ∈ candEdgesPair do

if (RAll(GN ) ≥ R0 with: EN \ {eij} ∧ EN ∪ {e1, e2})
EN ← EN \ {eij} ∧ EN ∪ {e1, e2}
return GN

Fig. 1. 1-by-2-neighbor move
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Fig. 2. Example 1-by-2-neighborhood

ssample for the problem. The dashed lines in G indicate those edges currently
not used in the network. For this example we use a 1-by-2-neighborhood solution
for the edge e15. We assume that RAll(GN ) < R0 after the removal of e15. The
1-by-2-heuristic searches two edges with total costs less than c15. Candidate
edges for the replacement are the edges {{e12, e25}, {e14, e45}} (assuming that
RAll(GN ) > R0 for the candidate edges). Since the total costs of {e12, e25} is
195 and the total cost of {e14, e45} is 140 the 1-by-2-heuristic replaces the edge
between vertex 1 and 5 with the edges {e14, e45}. The resulting neighbor for
ssample is shown in figure 2(b).

3.2 An Iterated Local Search with the 1-by-2-Move for the RCND
Problem

The concept of ILS is simple and easy to implement. In order to apply ILS to
a problem, one has to define an initialization method, a local search operator,
a mutation operator, an acceptance criteria and a termination condition. ILS
could also be used very easily for problems with a previously defined local search
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procedure Iterated Local Search
input: GN , G, R0

s0 = RandInitNetwork()
s∗ = 1-by-2-LocalSearch(s0)
do

s′ = mutate(s∗)
s′′= 1-by-2-LocalSearch(s′)
if (C(Ns′′) < C(Ns∗))

set s∗ = s′′

while (s∗ improved in last 10 iterations)

Fig. 3. ILS procedure

operator. The steps performed using the ILS for the RNCD problem are shown
in Figure 3. The ILS starts from an arbitrarily randomly-generated solution
s0. For each randomly-generated solution a reliability check to ensure that the
solution is valid under the given reliability constraint. Using the 1-by-2-move
the local search procedure tries to find a solution s in the neighborhood of s0
with C(Ns) < C(Ns0) and R(Ns) > R0. The solution with the smallest C(Ns)
is saved as s∗. Clearly, a solution s∗ is a local optimal for a RCND problem.

Afterwards, the ILS procedure enters an inner loop, which iteratively starts a
mutation followed by a local search using the best found solution s∗. In order to
bypass the local optima and to arrive at the global optimal solution, a mutation
operator generates s′ by perturbing the current best solution s∗. The ILS mutation
operator used here randomly adds currently unused edges from G to GN . The new
solution s′ generated by the mutation operator is used as a starting solution for
the local search procedure. With the 1-by-2-move the local search performs a local
search in the neighborhood of s′. The best result found by the local search is saved
in s′′. A new solution s′′ is accepted as a starting solution for the next ILS inner loop
iterationwhen the total cost of the new solutionC(Ns′′) is less than the current best
network cost C(Ns∗) and the solution does not violate the reliability constraint.
Otherwise the inner loop iterates with the best solution previously found. An ILS-
run stops if there is no improvement for C(Ns∗) in the ten previous iterations.

4 Experiments

4.1 Experimental Design

For our experiments we used a random restart local search (RRLS), an ILS and
a Steady State GA (with overlapping populations). All experiments are done
on a PIV- 2Ghz Linux PC. For each heuristic an initial solution is randomly
generated. We use the decomposition approach from [1] and an upper bound
method from [15] to calculate the all-terminal reliability. To accelerate the algo-
rithms, the reliability calculation procedure first estimates the reliability upper
bound by [15]. Only for networks with a reliability upper bound greater than R0
the exact reliability is calculated using the method from [1]. We perform 1000
independent runs for each problem with the RRLS, and 10 independent runs for
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each problem with the ILS and GA. The RRLS and LS used the 1-by-2-move
from Section 3.1 to generate the neighborhood for a solution. The RRLS and
ILS are implemented in C++. The GA uses the repair heuristic from [8] and
is implemented in C++ using the GALib[17]. For the GA, we use a population
size of 100, 50% replacement, a uniform crossover with a crossover probability
of pcross=0.9 and a mutation probability of pmut=0.01.

4.2 Results

Table 1 summarizes the results obtained by the RRLS, the ILS and the GA. The
table shows the number of nodes |V | and the number of edges |E|, the edge reli-
abilities r(l) and the reliability constraint R0. The test problems are taken from
[9]. Networks with the same number of nodes and same number of edges differ
in the node positions and edge costs. Cbest for the 11-nodes-problem with r(l) =
0.9, R0 = 0.95 and r(l) = 0.95, R0 = 0.95 are the best costs ever found. The op-
timal solutions Cbest for all other test problems are published in [9]. We call the
best fitness at the end of a run Cbestrun. We define DAV G as the average differ-
ence (in %) for all runs between the best fitness at the end of one run and Cbest :

DAV G =

|runs|∑
i=1

(Cbestruni
∗100

Cbest
− 100)

|runs| (3)

where |runs| is the number of runs. A high value for DAV G means that there
are many runs with a high difference between Cbestrun and CBest. A small value
for DAV G shows that an algorithm finds solutions close to CBest in all runs .

DBest (in %) is the difference between the best fitness of all runs and Cbest

for a test problem. Defined as:

DBest =
min{Cbestrun1 . . . Cbestrun|runs|} ∗ 100

Cbest
− 100 (4)

Dbest shows the ability of an algorithm to find Cbest in at least one run. DBest = 0
means that the algorithm finds a solution with C(N) = Cbest in at least one run.
The average number of fitness evaluations over all runs is shown by #Eval.

For each problem the size of the search space is 2|E|. While a 6-nodes-test
problem has only 32768 solutions the search space for a 10 nodes problem with
45 edges is already 245 ≈ 3.5 · 1013. The results show that the RRLS is able to
find optimal solutions for small problem instances (up to 7 nodes). An increase of
DBest for larger problems indicates that the RRLS remained in a local optimum.
This can be explained by the fact that a local search method is unable to leave
a local optima during a search. The higher value DBest for larger problems
shows that the best solutions found by the RRLS have a higher fitness difference
Cbestrun − CBest. This means that the RRLS often converges in a local optima.
For the RRLS, the high value of DAV G for all test problems shows that the
RRLS only finds global optima in few of the runs, while most runs end up with
a local optimal solution.
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Table 1. Comparison of RRLS, ILS and GA

RRLS ILS GA
|V | |E| r(l) R0 Cbest DAV G DBest #Evals DAV G DBest #EvalsDAV G DBest #Evals
6 15 0,9 0,9 231 23,33% 0,00% 10 9,52% 0,00% 49 0,00% 0,00% 288
6 15 0,9 0,9 239 41,63% 6,28% 10 6,02% 0,00% 62 0,00% 0,00% 184
6 15 0,9 0,9 227 41,35% 0,00% 10 6,17% 0,00% 55 0,00% 0,00% 171
6 15 0,9 0,9 212 50,35% 0,00% 10 2,40% 0,00% 48 0,00% 0,00% 278
6 15 0,9 0,9 184 42,13% 0,00% 10 5,00% 0,00% 44 0,00% 0,00% 193
6 15 0,950,95 227 20,40% 0,44% 10 13,00%0,00% 36 1,10% 0,00% 758
6 15 0,950,95 213 46,63% 0,00% 10 1,31% 0,00% 46 0,00% 0,00% 284
6 15 0,950,95 190 60,53% 0,00% 10 13,58%0,00% 64 0,00% 0,00% 201
6 15 0,950,95 200 52,29% 0,00% 10 9,50% 0,00% 33 0,50% 0,00% 436
6 15 0,950,95 179 41,03% 0,00% 10 6,70% 0,00% 77 0,00% 0,00% 762
7 21 0,9 0,9 189 31,72% 0,00% 14 7,67% 0,00% 124 0,00% 0,00% 598
7 21 0,9 0,9 184 57,85% 0,00% 14 1,25% 0,00% 92 0,00% 0,00% 403
7 21 0,9 0,9 243 38,03% 3,29% 14 6,42% 0,00% 94 2,18% 0,00% 418
7 21 0,9 0,9 129 53,36% 2,33% 15 4,14% 0,00% 99 0,85% 0,00% 657
7 21 0,9 0,9 124 112,22%11,29% 15 17,10%0,00% 90 0,00% 0,00% 319
7 21 0,950,95 185 30,60% 0,00% 14 7,73% 0,00% 67 0,00% 0,00% 977
7 21 0,950,95 182 54,57% 0,00% 14 4,51% 0,00% 75 0,00% 0,00% 782
7 21 0,950,95 230 40,67% 2,17% 14 4,65% 0,00% 72 1,04% 0,00% 416
7 21 0,950,95 122 52,44% 5,74% 14 4,84% 0,00% 79 0,57% 0,00% 846
7 21 0,950,95 124 104,97% 5,65% 14 13,55%0,00% 70 0,00% 0,00% 291
8 28 0,9 0,9 208 48,49% 4,81% 17 4,71% 0,00% 149 0,00% 0,00% 401
8 28 0,9 0,9 203 55,27% 4,93% 18 0,00% 0,00% 137 0,00% 0,00% 507
8 28 0,9 0,9 211 58,97% 18,96% 14 6,93% 0,00% 84 0,00% 0,00% 685
8 28 0,9 0,9 291 42,97% 0,00% 16 2,75% 0,00% 159 0,10% 0,00% 710
8 28 0,9 0,9 178 54,02% 0,00% 19 1,01% 0,00% 143 0,84% 0,00% 887
8 28 0,950,95 179 59,26% 0,00% 17 3,02% 0,00% 149 0,28% 0,00% 522
8 28 0,950,95 194 52,40% 4,12% 18 4,28% 0,00% 128 0,31% 0,00% 836
8 28 0,950,95 197 46,25% 0,00% 19 5,69% 0,00% 88 0,46% 0,00% 1070
8 28 0,950,95 276 42,97% 0,36% 16 4,78% 0,00% 108 2,17% 0,00% 805
8 28 0,950,95 173 51,65% 2,31% 19 8,79% 0,00% 89 1,62% 0,00% 1133
9 36 0,9 0,9 239 57,93% 2,93% 21 6,78% 0,00% 136 0,00% 0,00% 790
9 36 0,9 0,9 191 64,26% 1,57% 23 5,85% 0,00% 134 1,57% 0,00% 979
9 36 0,9 0,9 257 42,59% 8,95% 23 6,85% 0,00% 129 2,18% 0,00% 1051
9 36 0,9 0,9 171 73,73% 4,09% 21 5,15% 0,00% 153 0,00% 0,00% 714
9 36 0,9 0,9 198 58,57% 0,51% 22 0,05% 0,00% 148 0,00% 0,00% 809
9 36 0,950,95 209 65,01% 0,00% 21 1,96% 0,00% 151 0,00% 0,00% 683
9 36 0,950,95 171 70,97% 0,00% 23 11,29%0,00% 165 0,70% 0,00% 1261
9 36 0,950,95 233 48,61% 6,87% 22 8,28% 0,00% 137 0,69% 0,00% 1103
9 36 0,950,95 151 80,00% 0,00% 21 12,38%0,00% 137 1,79% 0,00% 757
9 36 0,950,95 185 55,62% 0,00% 22 6,92% 0,00% 111 0,16% 0,00% 1062
10 45 0,9 0,9 131 42,97% 1,53% 30 4,05% 0,00% 222 0,53% 0,00% 1282
10 45 0,9 0,9 154 84,15% 10,39% 27 11,30%0,00% 224 0,00% 0,00% 940
10 45 0,9 0,9 267 52,02% 1,87% 28 0,75% 0,00% 215 0,22% 0,00% 1207
10 45 0,9 0,9 263 45,37% 0,00% 29 2,55% 0,00% 158 0,00% 0,00% 791
10 45 0,9 0,9 293 48,08% 14,33% 26 8,58% 0,00% 194 2,87% 0,00% 1208
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Table 1. (Continued)
RRLS ILS GA

|V | |E| r(l) R0 Cbest DAV G DBest #Evals DAV G DBest #EvalsDAV G DBest #Evals
10 45 0,950,95 121 42,42% 3,31% 28 5,04% 0,00% 184 2,64% 0,00% 1614
10 45 0,950,95 136 88,20% 5,88% 26 15,59%0,00% 245 0,00% 0,00% 891
10 45 0,950,95 236 57,28% 5,93% 27 5,44% 0,00% 198 2,29% 0,00% 1096
10 45 0,950,95 245 45,58% 0,00% 29 0,57% 0,00% 228 0,12% 0,00% 1037
10 45 0,950,95 268 49,03%12,60% 30 10,90%0,00% 164 0,90% 0,00% 1352
11 55 0,9 0,9 246 48,08% 9,35% 31 3,46% 0,00% 217 0,00% 0,00% 1200
11 55 0,9 0,95 277 61,35%12,64% 34 8,45% 0,00% 230 0,00% 0,00% 1049
11 55 0,950,95 210 52,91% 0,48% 31 10,14%0,00% 195 1,33% 0,00% 1543

For all problem instances the average number of fitness/reliability evaluations
done by RRLS is less than that of the results obtained from the ILS and the
GA. The average number of fitness evaluations for all test problems done by the
RRLS is less than 35 runs. This shows the ability of the 1-by-2-move to rapidly
guide the search to a local optimal solution. The results show that the extension
of the LS by an additional mutation operator in an ILS method bypasses the
local optima, and finally ends up with global optimal solutions. An analysis of
DBest for the ILS points out that the heuristic found optimal solutions for all test
problems. When comparing the number of fitness/reliability evaluations (#eval),
one finds that the ILS requires more evaluations than the RRLS, but significantly
less computational effort than the GA. An analysis of the results obtained by
the ILS and the GA shows that DBest for the GA is equal to the DBest for the
ILS. But the GA performed more fitness evaluations than the ILS. The DAV G

measure shows that the GA, compared to the ILS, has a low diversification of
the best solution in all ten runs. Compared to the DAV G results for the ILS, the
GA converges more often than the ILS does with the global optimal solution in
all ten runs. This result can be explained by the nature of the GA heuristic. Over
a GA run, solutions in the population with a low fitness quality are replaced by
better solutions. At the end of a GA run only the best of the 100 solutions in
the population is used for the DAV G measure. In the ILS, the search process
is driven by only one solution, which is not always the optimal solution of the
problem in all runs.

Figure 4 shows a comparison of the running time for the ILS and GA heuris-
tics. Each plot shows the average running time (in seconds) for all runs for the
same problem class (same number of nodes) and the same configuration (link
reliability and R0). The plots in Figure 4(a) point out that the ILS is faster than
the GA for all test problems. One can see that the difference between the ILS
and GA running times increase as the problem size (number of nodes) grows.
Figure 4(b) shows a similar result with only one exception (10 nodes). Although
the GA performed more fitness evaluations than the ILS for the 10-nodes-test
problems (with r(l) = 0.95 and R0 = 0.95) the GA is faster than the ILS. This
can be explained by the implemented all-terminal reliability calculation proce-
dure which is based on a decomposition approach (see [1]). For highly reliable
networks the procedure stops after a few decomposition steps and requires low
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Fig. 4. Comparison of running time for ILS and GA

computational effort. For networks with RAll ≈ R0 the procedure must perform
more decomposition steps which require a higher computational effort. This fact
speeds up the GA, when compared to the ILS, as it generates many high re-
liable networks. The all-terminal reliability evaluation for these highly reliable
networks can be done very quickly. The all-terminal reliability calculation pro-
cedure used here also explains an other interesting fact. A comparison of the
running times for different configurations (link reliability and R0) and the same
problem class (same number of nodes) shows, that both heuristics run faster for
r(l) = 0.95 and R0 = 0.95 than for r(l) = 0.9 and R0 = 0.9 although the heuris-
tics performed more or approximately the same number of fitness evaluations. As
mentioned before, this is caused by the reliability calculation procedure. If the
all-terminal reliability evaluation procedure is replaced by a Monte Carlo simula-
tion, always drawing the same number of samples for each reliability evaluation,
the procedure has a constant computational effort. In this case the running time
of a heuristic is proportional to the number of fitness evaluations.

5 Conclusions

This paper investigated a local search and iterated local search approach for
the reliable communication network design problem. Existing approaches are
capable of finding good solutions, but call for high computational effort levels.
Due to the application of local search methods, the number of fitness evaluations
was decreased while maintaining the same quality of solutions. We presented
a new 1-by-2-move to generate the neighborhood for a solution. By dropping
and replacing the most cost-intensive network links by two overall cheaper links
under the given reliability constraint, the move found fitter neighbor solutions.
The move connected two nodes that were previously connected directly via a
third node because the indirect connection was cheaper and did not violate the
reliability constraint. The empirical results showed that a local search with the
1-by-2-move often converges in a local optimum. We proposed an iterated local
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search that is more efficient than existing approaches. This iterated local search
with the 1-by-2-move finds global optimal solutions and outperforms a GA using
a repair heuristic for a set of test problems.
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