

Reichelt, Dirk ; Rothlauf, Franz ; Gmilkowsky, Peter :

Designing reliable communication networks wih a genetic
algorithm using a repair heuristic

Zuerst erschienen in:
Evolutionary computation in combinatorial otpimization. - Berlin [u.a.]
: Springer, 2004
S. 177-187
(Lecture Notes in Computer Science ; 3004)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224763967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Designing Reliable Communication Networks
with a Genetic Algorithm Using a Repair

Heuristic

Dirk Reichelt1, Franz Rothlauf2, and Peter Gmilkowsky1

1 Institute of Information Systems, Ilmenau Technical University
Helmholtzplatz 3, P.O. Box 100565, 98684 Ilmenau, Germany,

{Dirk.Reichelt@tu-ilmenau.de,Peter.Gmilkowsky}@tu-ilmenau.de
2 University of Mannheim, Department of Information Systems I

Schloss, 68131 Mannheim, Germany
rothlauf@uni-mannheim.de

Abstract. This paper investigates GA approaches for solving the reli-
able communication network design problem. For solving this problem a
network with minimum cost must be found that satisfies a given network
reliability constraint. To consider the additional reliability constraint dif-
ferent approaches are possible. We show that existing approaches using
penalty functions can result in invalid solutions and are therefore not
appropriate for solving this problem. To overcome these problems we
present a repair heuristic, which is based on the number of spanning
trees in a network. This heuristic always generates a valid solution, which
when compared to a greedy cheapest repair heuristic shows that the new
approach finds better solutions with less computational effort.

1 Introduction

The optimal design of reliable communication and transportation networks is
important in many application fields such as gas pipelines, communication net-
works, and electricity distribution. When designing reliable communication net-
works there is a trade-off between the necessary investments in the network
and the quality of service provided to the network users. An important service
measurement is the all-terminal reliability of the network which is defined as the
probability that the network is still connected even if some nodes or links fail [1].
In the reliable communication network problem [2] communication links must
be chosen such that the network costs are minimized given a network reliability
constraint. Both the network design problem and the calculation of the network
reliability, have been proven to be NP-hard [3,4]. Genetic Algorithms (GA) have
shown promising results when applied to this problem [5,6,7].

In this paper we investigate existing GA approaches for the design of reliable
communication networks and propose a heuristic that repairs each candidate
solution with respect to the number of spanning trees in the graph. In contrast
to other approaches, which only indirectly measure reliability, the number of

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2004, LNCS 3004, pp. 177–187, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

178 D. Reichelt, F. Rothlauf, and P. Gmilkowsky

spanning trees in a graph is a more accurate measurement for the all-terminal
reliability of a network [8]. We present empirical results that show that the
proposed heuristic outperforms a standard greedy repair heuristic by finding
better solutions and using a lower computational effort.

In the following section we give a short problem description. Section 3 inves-
tigates different approaches to consider reliability constraints in GA design. In
section 4 we discuss the deficites of existing approaches and propose an approach
based on the number of spanning trees. Experimental results and a comparison
to a simple greedy heuristic are presented in section 5.2. The paper ends with
concluding remarks.

2 Problem Definition

For the reliable communication network design problem (RCND) [2], a net-
work topology with minimal cost must be found that satisfies a given relia-
bility constraint. This problem has been proven as NP-hard [3], and several
GA-approaches have been proposed for this problem. [9] introduced a branch
and bound algorithm minimizing network costs under a reliability constraint.
Later, Dengiz et al. proposed a GA [5] using a penalty function to incorporate
the reliability constraint directly into the fitness function, as well as a simulated
annealing approach [10]. [11] extended this work and developed a parallel GA
for larger problem instances. [12] presented a GA with multiple reliability con-
straints. [6] did not incorporate the reliablity contraint into the fitness function
but used a problem specific representation and adapted GA operators.

The RCND problem can be defined as follows: an undirected graph is denoted
as G = (V, E), n = |V | denotes the number of nodes, and m = |E| denotes the
number of edges of G. It is assumed that the location of each node is given
a priori and all nodes are perfect reliable. The degree d(i) of a node i is the
number of edges that are connected to node i. For each possible edge eij ∈ E
the corresponding costs cij and reliability rij are known. The probability 1− rij

that the edge eij fails is statistically independent. A graph G is n-connected if
there are at least n edge-disjoint paths between all pairs of nodes i and j. The
objective function of the problem is:

C(G) =
n∑

i=1

n−1∑

j=i+1

cijxij → min

subject to: R(G) ≥ R0,

(1)

where C(G) is the total cost of the network G and cij is the costs for an edge
connecting node i and j. The variable xij ∈ (0, 1) indicates whether edge eij ∈ E.
R(G) is the all-terminal reliability that is the probability that the network G
is still connected (even if some of the edges eij ∈ E fail). The calculation of
the all-terminal reliability has been proven as NP-hard [4]. Exact algorithms for
calculating the all-terminal realiability for networks with a low number of nodes

Designing Reliable Communication Networks with a Genetic Algorithm 179

have been proposed by [1,13]. For larger networks, monte carlo-based estimations
of the all-terminal reliability [14] are more appropriate. It was shown in [8] that
the number of spanning trees in G is an appropriate measurement for the all-
terminal reliability (a network G is still connected (and reliable) as long as there
is at least one spanning tree in G).

3 Considering Reliability Constraints in Genetic
Algorithms

Standard GAs are not able to handle additional problem constraints. Therefore,
much research has been focused on how to consider constraints in GA design.
It can be distinguished between two different approaches on how to deal with
constraints [15,16]. Firstly, indirect constraint handling techniques consider con-
straints by modifications of the fitness functions. Violations of constraints lead
to a lower fitness value (penalty) of the candidate solution. Secondly, direct con-
straint handling techniques modify the structure of the GA. In principle, there
are four different approaches:

– Leave invalid solutions in the population.
– Eliminate infeasible solutions from the population.
– Prevent infeasible solutions by problem-specific representations and opera-

tors.
– Repair infeasible candidate solutions.

There are some approaches that have no explicite mechanisms to consider ad-
ditional constraints but to some extent accept invalid solutions [17]. They hope
that the best solution at the end of the run is valid. However, such approaches
can only be used if the number of invalid solutions is low.

Other GA approaches eliminate invalid solutions that are generated during
a GA run. This approach is only possible if the number of invalid solutions is
low. Furthermore, there is the problem that the removal of infeasible candidates
solutions may take valuable genetic material from the population that might
produce high-quality offspring after recombination and mutation [16,18].

After discussing in general the first two simple direct constraint handling
techniques, we focus in the next subsection on the remaining direct, as well as
indirect, approaches in the context of the RCND problem.

3.1 Penalty Functions

The indirect constraint handling by penalties as suggested in [19] incorporates
a constraint into the fitness function. This transforms a constraint optimization
problem to an unconstrained problem by adding penalties for constraint viola-
tions to the fitness value of a solution. When using penalties, infeasible solutions
remain in the population and their genetic material can be used. Using penal-
ties requires a well-designed penalty function that does not generate new local
optima, or let global optima become suboptimal [20].

180 D. Reichelt, F. Rothlauf, and P. Gmilkowsky

In the context of the RCND problem, [5] proposed a fitness function with a
quadratic penalty term. The objective function from equation 1 becomes:

C ′(G) =
n∑

i=1

n−1∑

j=i+1

cijxij + δ ∗ (cmax(R(G) − R0))2

δ =

{
0, if R(G) ≥ R0

1, if R(G) < R0

cmax = max
eij∈E

(cij)

(2)

This problem formulation uses a quadratic penalty term. Additionally, [5]
used a repair heuristic which ensures that the degree of all nodes is larger than
one (d(i) ≥ 2,∀i ∈ V).

Table 1. Results of GAs using the penalty approach from equation 2

To check if this penalty approach results in correct solutions, we implemented
a GA with the fitness function from equation 2. For the experiments we used a
steady state GA with a binary representation, uniform crossover without muta-
tion, and an exact reliability evaluation based on [1].

Table 1 shows the results of our experiments using the proposed penalty
function for selected 8 nodes test problems using rij = 0.9 and R0 = 0.9 resp.
R0 = 0.95. The two test instances (network 1 and network 3) are taken from
[5]. We show the total cost of the correct optimal solution C(Gopt) published in
[5], where R(Gopt) ≥ R0, the lowest found cost C ′(G′

opt) of the network G′
opt

according to equation 2, and the corresponding all-terminal realiability R(G′
opt).

It can be seen that using equation 2 can result in solutions G′
opt that have lower

cost C ′(G′
opt) < C ′(Gopt), but violate the reliability constraint (R(G′

opt) < R0).
Only for one instance (network 3, rij = 0.9, and R0 = 0.9), could a valid solution
be found. For the other problems the penalty from equation 2 is too low to
ensure a valid solution. As a result the total fitness for an infeasible network
G′

opt can be smaller than the fitness for the cheapest feasible network Gopt.
These examples show that an unfavorable design of penalty functions may cause
the solutions with lowest fitness to be infeasible. Summarizing the results, the
proposed penalty function from [5] does not work in an effective way and can
result in invalid solutions.

Designing Reliable Communication Networks with a Genetic Algorithm 181

3.2 Problem-Specific Representations and Operators

Most standard GAs use binary representations and standard operators like n-
point or uniform crossover. When applying such standard operators to valid
solutions encoded with a standard representation, the resulting offspring can be
invalid. This situation can be avoided by using either problem-specific represen-
tations, or operators that consider the constraint at hand.

We want to give two examples for network problems where the optimal so-
lution should be a tree. Trees are a special variant of fully connected graphs
G where |E| = |V | − 1. The use of the problem-specific Prüfer number repre-
sentation [21] allows us to consider the constraint that valid solutions are trees.
Another possibility to consider this constraint is using direct representations and
problem-specific operators (e.g. [22]). The problem-specific operators ensure that
only valid solutions (trees) can be created.

[6] presented problem-specific crossover and mutation operators for the
RCND problem. The crossover operator randomly exchanges one link between
two parents. If the offspring does not satisfy the reliability constraint, an addi-
tional heuristic is applied such that the order of each node is greater than one
(d(i) ≥ 2,∀i ∈ V). The mutation operator searches for two rings in the graph
that share only one common node. To reduce the cost C(G) of the network,
it merges the two rings to one single ring. If the parent is a network, where
d(i) ≥ 2 ∀i ∈ V , the offspring is also a network with d(i) ≥ 2.

4 Repair Heuristics

This section shows some deficits of exisiting repair heuristics for the RCND
problem, and proposes a new heuristic based on counting spanning trees.

4.1 Deficits of Existing Approaches

When using standard GA operators, problem-specific heuristics can be used to
repair invalid solutions violating constraints. A repair heuristic changes candi-
date solutions such that they become feasible [16]. Two different repair strategies
can be distinguished: The Lamarkian approach replaces the parental individual
by the offspring. The Baldwinian approach leaves the individual untouched but
only its fitness is replaced by the fitness of the repaired solution.

[6] and [5] introduced greedy repair heuristics
1

2

3 4

5

6

Fig. 1. Example tree with
d(i) ≥ 2, ∀i ∈ V

for the RCND problem. An individual is repaired
such that all nodes have at least the degree two
(d(i) ≥ 2,∀i ∈ V). The repair strategies used
the degree of the nodes as a measurement of the
all-terminal reliability of the network. However, a
network with d(i) ≥ 2,∀i ∈ V , is not always 2-
connected as can be seen for example in Figure 1. If the edge e3,4 fails, the
network is separated into two unconnected network components. Although all

182 D. Reichelt, F. Rothlauf, and P. Gmilkowsky

nodes in the original network have degree larger than one, it is already discon-
nected if only one link fails. This example illustrates that the repair procedures
proposed in [5,6] only use a weak reliability measure. To design networks based
on the all-terminal reliability, more accurate measurements of reliability are nec-
essary.

4.2 Spanning Tree Counting Repair Heuristic

In the previous paragraphs we have discussed the deficits of existing approaches
solving the RCND problem. Therefore, inspired by the reliability improvement
procedure proposed by [8], we introduce a GA using a spanning tree counting
(STC) repair heuristic. As the exact calculation of the all-terminal reliability
causes high computation effort, [8] use the number of spanning trees in the graph
G as a measurement of all-terminal reliability. It was shown that the number
of spanning trees in the graph is a good approximation for the all-terminal
reliability.

The basic idea of the STC repair heuristic is to add these edges to the graph
that maximize the reliability (number of spanning trees in the network) with
minimal additional costs. Consequently, the STC repair heuristic calculates for
the cheapest edges that are not in the network G, the possible increase of span-
ning trees if these edges are added:

1. Sort all links eij /∈ E according to the corresponding edge costs cij . i = 0.
2. Insert the i-cheapest edge eij temporarily into G and calculate the ratio

sij = cij/increase in number of spanning trees in G. i = i + 1.
3. If i < t continue with step 2.
4. Add edge eij /∈ E with highest corresponding sij to G.
5. Calculate R(G).
6. If R(G) < R0, then continue with step 4.

In step two and three the heuristic calculates for the cheapest edges, the ratio
between the cost of the edge, and the increase in the number of spanning trees.
The increase in the number of spanning trees can be calculated with low compu-
tational effort by a simple update procedure [8]. The number of edges that are
investigated is limited by t, where t < n(n− 1)/2− |E|. In step four to six edges
with highest improve ratio sij are iteratively added to G until the reliability
constraint is fullfilled.

5 Experiments

5.1 Experimental Design

For our experiments we use a steady state GA with a binary representation of
length l = n(n−1)/2. The existence of an edge in G is encoded by 1, its absence
by 0. The GA uses one-point crossover and bit-flipping mutation. The initial
population consists of randomly created 2-connected graphs. The initialization

Designing Reliable Communication Networks with a Genetic Algorithm 183

routine firstly creates a random spanning tree and then randomly adds links
until the graph is 2-connected.

As the effort for calculating network reliability is high, we used several tech-
niques to speed up reliability evaluation. As a first step in calculating the all-
terminal reliability of a network we determined an upper bound Rup(G) for the
reliability of a network G using a method proposed by [23]. If Rup(G) < R0
the network can not fullfill the reliability constraint and it is not necessary to
calculate the reliability exactly. Only if Rup(G) ≥ R0, we calculate R(G) ex-
actly using a method proposed by [1]. When using this method, we already get
a measurement of the all-terminal realiability during the run. We stop the exact
calculation as soon as the reliability constraint R0 is satisfied. Finally, to avoid
calculating the reliability of networks G that have been evaluated previously, we
store the reliability of all graphs using a hash table. For all new individuals the
hash is searched if the network reliability has already been calculated.

If the network reliability of a network is too low (R(G) < R0) the STC
heuristic repairs the network and adjusts the chromosome according to the new
network. For comparison we have implemented an additional greedy cheapest
repair procedure. This heuristic adds the cheapest edge to the network until the
graph satisfies the constraint. Unlike the STC heuristic, it does not consider
reliability (increase in number of spanning trees) when choosing edges. After
constructing a valid solution by a repair heuristic the fitness of the individual is
calculated according to equation (1). This approach ensures that we have only
valid solutions.

In our experiments we use a steady state GA with 50% replacement, a
crossover probability pcross = 0.9, a mutation probability pmut = 0.01, a pop-
ulation size of 100, an edge reliability rij = 0.9,∀eij ∈ E, and a reliability
constraints R0 = 0.9 and R0 = 0.95. The GA stops after 250 generations or
convergence. For each test instance we performed ten independent runs.

5.2 Results

Both heuristics have been tested with network problems (8, 10 and 11 nodes)
taken from [5], and a new test problem for the 15 largest German cities. We
compare the quality of the solutions and the number of repair operations that
are necessary for finding high quality solutions. As after each repair operation
a reliability check has to be performed, and the reliability checks are computa-
tionally demanding, the number of repair operations impacts the running time
of the GA. Unfortunately it is not possible to compare our approach directly to
the results from [5], because they penalize invalid solutions using the objective
function from equation 2, and repair invalid solutions with regard to the degree
of the nodes (d(i) ≥ 2,∀i ∈ N). The penalty approach can not be used for a
comparison as it can result in invalid solutions (compare section 3.1).

Figure 2 compares the results for the STC heuristic and the greedy cheapest
repair heuristic. The plots show the fitness of the best solution and the number
of repair operations over the number of generations for the 8 nodes (Figure 2(a)),
10 nodes (Figure 2(b)), and the new 15 nodes (Figure 2(c)) problem. All values

184 D. Reichelt, F. Rothlauf, and P. Gmilkowsky

 200

 210

 220

 230

 240

 250

 260

 5 10 15 20 25 30 35 40

fit
ne

ss

generation

greedy cheapest repair
STC heuristic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of
 r

ep
ai

rs
 p

er
 g

en
er

at
io

n

generation

greedy cheapest repair
STC heuristic

(a) 8 node

 120

 140

 160

 180

 200

 220

 240

 10 20 30 40 50 60

fit
ne

ss

generation

greedy cheapest repair
STC heuristic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

nu
m

be
r

of
 r

ep
ai

rs
 p

er
 g

en
er

at
io

n

generation

greedy cheapest repair
STC heuristic

(b) 10 node

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 50 100 150 200 250

fit
ne

ss

generation

greedy cheapest repair
STC heuristic

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 50 100 150 200 250

nu
m

be
r

of
 r

ep
ai

rs
 p

er
 g

en
er

at
io

n

generation

greedy cheapest repair
STC heuristic

(c) 15 nodes

Fig. 2. Fitness of the best solution (left) and number of repair operations (right) over
the number of generations. The plots show that the STC heuristic finds better solutions
and needs less repair operations

Designing Reliable Communication Networks with a Genetic Algorithm 185

are averaged over ten runs. The plots show that the STC heuristic converges
more slowly towards high-quality solutions, but always finds better solutions at
the end of the run. The plots for the number of repairs show that the STC repair
heuristic needs significantly less repairs. Therefore, the STC heuristic is for the 15
nodes problem much faster in comparison to the greedy cheapest repair heuristic
(compare also Table 2). This advantage in running time can not be observed for
the 8 nodes and 10 nodes problem. The used all-terminal reliability calculation
needs for both test problem a low computational effort, therefore the additional
repairs have only little impact on the GA running time.

Table 2. Comparison of STC and greedy cheapest repair heuristic

Table 2 summarizes the results for the two heuristics and shows the optimal
solution, the average best solution found at the end of a GA run, the average
number of repair operations that are necessary to find the best solution, and the
average running time tconv. The optimal solutions for the 8, 10 and 11 nodes
problem have been published in [5]. The optimal solution for the 15 nodes test

186 D. Reichelt, F. Rothlauf, and P. Gmilkowsky

problem is the best ever found solution from a GA using the STC heuristic.
As before a GA using the STC heuristic finds better solutions with lower com-
putational effort. The additional effort of the STC heuristic for calculating the
potential increase in the number of spanning trees in G (compare section 4.2) is
low, as it can be computed as the determinant of the node degree matrix [24].

6 Conclusions

This paper investigates existing GA approaches for the reliable communication
network design (RCND) problem and proposes a heuristic repair approach based
on the number of spanning trees in a network. The analysis of existing approaches
for solving the RCND problem reveals some deficits. The penalty approach from
[5] can result in invalid solutions and the greedy repair heuristics introduced by
[6] and [5] repair invalid solutions according to the degree of the nodes and do
not consider the all-terminal reliability of the network.
Therefore, we present a spanning tree counting (STC) repair heuristic that can
be combined with standard GAs. This heuristic considers the number of span-
ning trees in a graph as a more meaningful reliability measure when repairing
invalid solutions. The empirical results show that the STC heuristic outperforms
a greedy cheapest repair heuristic that considers only the cost of links. The STC
heuristic allows only valid solutions and finds in comparison to the greedy cheap-
est repair heuristic better solution using less computational effort.

References

1. Yubin Chen, Jiandong Li, and Jiamo Chen. A new algorithm for network proba-
bilistic connectivity. In Proceedings of the IEEE military communication confer-
ence, Piscataway, NJ, 1999. IEEE Service Center.

2. Robert R. Boorstyn and Howard Frank. Large-scale network topological optimiza-
tion. IEEE Transactions on Reliability, 25:29–37, 1977.

3. M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Fransisco, 1979.

4. Li Ying. Analysis method of survivability of probabilistic networks. Military Com-
munication Technology Magazine, 48, 1993.

5. B. Dengiz, F. Altiparmak, and A. E. Smith. Local search genetic algorithm for
optimal design of reliable networks. IEEE Trans. on Evolutionary Computation,
1(3):179–188, 1997.

6. Sheng-Tzong Cheng. Topological optimization of a reliable communication net-
work. IEEE Transactions on Reliability, 47(3):225–233, 1998.

7. Baoding Liu and K. Iwamura. Topological optimization model for communication
network with multiple reliability goals. Computer and Mathematics with Applica-
tions, 39:59–69, 2000.

8. N. Fard and Tae-Han Lee. Spanning tree approach in all-terminal network relia-
bility expansion. computer communications, 24:1348–1353, 2001.

9. Rong-Hong Jan, Fung-Jen Hwang, and Sheng-Tzong Chen. Topological optimiza-
tion of a communication network subject to a reliability constraint. IEEE Trans-
actions on Reliability, 42(1):63–70, 93.

Designing Reliable Communication Networks with a Genetic Algorithm 187

10. B. Dengiz and C. Alabas. A simulated annealing algorithm for design of computer
communication networks. In Proceedings of World Multiconference on Systemics,
Cybernetics and Informatics, SCI 2001, volume 5, 2001.

11. Benjamin Baran and Fabian Laufer. Topological optimization of reliable networks
using a-teams. In Proceedings of World Multiconference on Systemics, Cybernetics
and Informatics - SCI ’99 and ISAS ’99, volume 5, 1999.

12. B.Liu and K. Iwamura. Topological optimization models for communication net-
work with multiple reliability goals. Computers and Mathematics with Applica-
tions, 39:59–69, 2000.

13. K.K. Aggarwal and Suresg Rai. Reliability evaluation in computer-communication
networks. IEEE Transactions on Reliability, 30(1):32–35, 1981.

14. E. Manzi E., M. Labbe, G. Latouche, and F. Maffioli. Fishman’s sampling plan
for computing network reliability. IEEE Transactions on Reliability, 50(1):41–46,
2001.

15. Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, Berlin, 3 edition, 1996.

16. B.G.W. Craenen, A.E. Eiben, and E.Marchiori. How to handle constraints with
evolutionary algortihms. In Lance Chambers, editor, Practical Handbook Of Ge-
netic Algorithms: Applications, pages 341–361. Chapman & Hall/CRC, 2000.

17. L. Davis, D. Orvosh, A. Cox, and Y. Qiu. A genetic algorithm for survivable net-
work design. In S. Forrest, editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 408–415, San Mateo, CA, 1993. Morgan Kaufmann.

18. Steven Orla Kimbrough, Ming Lu, David Harlan Wood, and D.J. Wu. Exploring
a two-population genetic algorithm. In Erick Cantu-Paz et al, editor, Proceedings
of the Genetic and Evolutionary Computation Conference 2003, pages 1148–1159,
Berlin, 2003. Springer-Verlag.

19. D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, Reading, MA, 1989.

20. Jens Gottlieb. Evolutionary Algorithms for Constrained Optimization Problems.
PhD thesis, Technische Universität Clausthal, Institut für Informatik, Clausthal,
Germany, 1999.

21. H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik
und Physik, 27:742–744, 1918.

22. Günther R. Raidl and Bryant A. Julstrom. Edge-sets: An effective evolution-
ary coding of spanning trees. IEEE Transactions on Evolutionary Computation,
7(3):225–239, 2003.

23. A. Konak and A. Smith. An improved general upperbound for all-terminal network
reliability. Technical report, University of Pittsburgh, 1998.

24. C.J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press,
1987.

	Introduction
	Problem Definition
	Considering Reliability Constraints in Genetic Algorithms
	Penalty Functions
	Problem-Specific Representations and Operators

	Repair Heuristics
	Deficits of Existing Approaches
	Spanning Tree Counting Repair Heuristic

	Experiments
	Experimental Design
	Results

	Conclusions

