68 research outputs found

    Evolution of a Relativistic Electron Beam for Tracing Magnetospheric Field Lines

    Get PDF
    Tracing magnetic field-lines of the Earth\u27s magnetosphere using beams of relativistic electrons will open up new insights into space weather and magnetospheric physics. Analytic models and a single-particle-motion code were used to explore the dynamics of an electron beam emitted from an orbiting satellite and propagating until impact with the Earth. The impact location of the beam on the upper atmosphere is strongly influenced by magnetospheric conditions, shifting up to several degrees in latitude between different phases of a simulated storm. The beam density cross-section evolves due to cyclotron motion of the beam centroid and oscillations of the beam envelope. The impact density profile is ring shaped, with major radius ~22 m, given by the final cyclotron radius of the beam centroid, and ring thickness ~2 m given by the final beam envelope. Motion of the satellite may also act to spread the beam, however it will remain sufficiently focused for detection by ground-based optical and radio detectors. An array of such ground stations will be able to detect shifts in impact location of the beam, and thereby infer information regarding magnetospheric conditions

    Relativistic Particle Beams as a Resource to Solve Outstanding Problems in Space Physics

    Get PDF
    The Sun\u27s connection with the Earth\u27s magnetic field and atmosphere is carried out through the exchange of electromagnetic and mass flux and is regulated by a complex interconnection of processes. During space weather events, solar flares, or fast streams of solar atmosphere strongly disturb the Earth\u27s environment. Often the electric currents that connect the different parts of the Sun-Earth system become unstable and explosively release the stored electromagnetic energy in one of the more dramatic expressions of space weather—the geomagnetic storm and substorm. Some aspects of the magnetosphere-ionosphere connection that generates auroral arcs during space weather events are well-known. However, several fundamental problems remain unsolved because of the lack of unambiguous identification of the magnetic field connection between the magnetosphere and the ionosphere. The correct mapping between different regions of the magnetosphere and their foot-points in the ionosphere, coupled with appropriate distributed measurements of plasma and fields in focused regions of the magnetosphere, is necessary to establish unambiguously that a given magnetospheric process is the generator of an observed arc. We present a new paradigm that should enable the resolution of the mapping ambiguities. The paradigm calls for the application of energetic electron beams as magnetic field tracers. The three most important problems for which the correct magnetic field mapping would provide closure to are the substorm growth phase arcs, the expansion phase onset arcs and the system of arcs that emerge from the magnetosphere-ionosphere connection during the development of the early substorm expansion phase phenomenon known as substorm current wedge (SCW). In this communication we describe how beam tracers, in combination with distributed measurements in the magnetosphere, can be used to disentangle the mechanisms that generate these critical substorm phenomena. Since the application of beams as tracers require demonstration that the beams can be injected into the loss cone, that the spacecraft potentials induced by the beam emission are manageable, and that sufficient electron flux reaches the atmosphere to be detectable by optical or radio means after the beam has propagated thousands of kilometers under competing effects of beam spread and constriction as well as effects of beam-induced instabilities, in this communication we review how these challenges are currently being addressed and discuss the next steps toward the realization of active experiments in space using relativistic electron beams

    Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodysill, J. R., Donnelly, J. P., Sullivan, R., Lane, P. D., Toomey, M., Woodruff, J. D., Hawkes, A. D., MacDonald, D., d'Entremont, N., McKeon, K., Wallace, E., & van Hengstum, P. J. Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE. Scientific Reports, 10(1), (2020): 19092. doi:10.1038/s41598-020-75874-0.Hurricane Michael (2018) was the first Category 5 storm on record to make landfall on the Florida panhandle since at least 1851 CE (Common Era), and it resulted in the loss of 59 lives and $25 billion in damages across the southeastern U.S. This event placed a spotlight on recent intense (exceeding Category 4 or 5 on the Saffir-Simpson Hurricane Wind Scale) hurricane landfalls, prompting questions about the natural range in variability of hurricane activity that the instrumental record is too short to address. Of particular interest is determining whether the frequency of recent intense hurricane landfalls in the northern Gulf of Mexico (GOM) is within or outside the natural range of intense hurricane activity prior to 1851 CE. In this study, we identify intense hurricane landfalls in northwest Florida during the past 2000 years based on coarse anomaly event detection from two coastal lacustrine sediment archives. We identified a historically unprecedented period of heightened storm activity common to four Florida panhandle localities from 650 to 1250 CE and a shift to a relatively quiescent storm climate in the GOM spanning the past six centuries. Our study provides long-term context for events like Hurricane Michael and suggests that the observational period 1851 CE to present may underrepresent the natural range in landfalling hurricane activity.Funding for this project was provided by the Strategic Environmental Research and Development Program (SERDP) grant and NSF awards 0903020, 1902463, and 1854980 awarded to Jeffrey Donnelly, and the USGS Land Change Science Program

    Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    Get PDF
    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer

    Cloning a Profibrotic Stem Cell Variant in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate libraries of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions

    Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders

    Full text link
    BACKGROUND: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjogren's syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. OBJECTIVES: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. METHODS: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. RESULTS: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). CONCLUSION: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients

    Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    Get PDF
    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities

    Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees

    Get PDF
    Significance Contributions of rare variants to common and complex traits such as type 2 diabetes (T2D) are difficult to measure. This paper describes our results from deep whole-genome analysis of large Mexican-American pedigrees to understand the role of rare-sequence variations in T2D and related traits through enriched allele counts in pedigrees. Our study design was well-powered to detect association of rare variants if rare variants with large effects collectively accounted for large portions of risk variability, but our results did not identify such variants in this sample. We further quantified the contributions of common and rare variants in gene expression profiles and concluded that rare expression quantitative trait loci explain a substantive, but minor, portion of expression heritability.</jats:p
    corecore