31 research outputs found

    Improved methods for functional neuronal imaging with genetically encoded voltage indicators

    Get PDF
    Voltage imaging has the potential to revolutionise neuronal physiology, enabling high temporal and spatial resolution monitoring of sub- and supra-threshold activity in genetically defined cell classes. Before this goal is reached a number of challenges must be overcome: novel optical, genetic, and experimental techniques must be combined to deal with voltage imaging’s unique difficulties. In this thesis three techniques are applied to genetically encoded voltage indicator (GEVI) imaging. First, I describe a multifocal two-photon microscope and present a novel source localisation control and reconstruction algorithm to increase scattering resistance in functional imaging. I apply this microscope to image population and single-cell voltage signals from voltage sensitive fluorescent proteins in the first demonstration of multifocal GEVI imaging. Second, I show that a recently described genetic technique that sparsely labels cortical pyramidal cells enables single-cell resolution imaging in a one-photon widefield imaging configuration. This genetic technique allows simple, high signal-to-noise optical access to the primary excitatory cells in the cerebral cortex. Third, I present the first application of lightfield microscopy to single cell resolution neuronal voltage imaging. This technique enables single-shot capture of dendritic arbours and resolves 3D localised somatic and dendritic voltage signals. These approaches are finally evaluated for their contribution to the improvement of voltage imaging for physiology.Open Acces

    Single-Neuron Level One-Photon Voltage Imaging With Sparsely Targeted Genetically Encoded Voltage Indicators

    Get PDF
    Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design

    Mosquito Feeding Affects Larval Behaviour and Development in a Moth

    Get PDF
    Organisms are attacked by different natural enemies present in their habitat. While enemies such as parasitoids and predators will kill their hosts/preys when they successfully attack them, enemies such as micropredators will not entirely consume their prey. However, they can still have important consequences on the performance and ecology of the prey, such as reduced growth, increased emigration, disease transmission

    Change in physical activity level and clinical outcomes in older adults with knee pain: a secondary analysis from a randomised controlled trial

    Get PDF
    BACKGROUND: Exercise interventions improve clinical outcomes of pain and function in adults with knee pain due to osteoarthritis and higher levels of physical activity are associated with lower severity of pain and higher levels of physical functioning in older adults with knee osteoarthritis in cross-sectional studies. However, to date no studies have investigated if change in physical activity level during exercise interventions can explain clinical outcomes of pain and function. This study aimed to investigate if change in physical activity during exercise interventions is associated with future pain and physical function in older adults with knee pain. METHODS: Secondary longitudinal data analyses of a three armed exercise intervention randomised controlled trial. Participants were adults with knee pain attributed to osteoarthritis, over the age of 45 years old (n = 514) from Primary Care Services in the Midlands and Northwest regions of England. Crude and adjusted associations between absolute change in physical activity from baseline to 3 months (measured by the self-report Physical Activity Scale for the Elderly (PASE)) and i) pain ii) physical function (Western Ontario and McMaster Universities Osteoarthritis Index) and iii) treatment response (OMERACT-OARSI responder criteria) at 3 and 6 months follow-up were investigated using linear and logistic regression. RESULTS: Change in physical activity level was not associated with future pain, function or treatment response outcomes in crude or adjusted models at 3 or 6 months (P > 0.05). A 10 point increase in PASE was not associated with pain β = - 0.01 (- 0.05, 0.02), physical function β = - 0.09 (- 0.19, 0.02) or likelihood (odds ratio) of treatment response 1.02 (0.99, 1.04) at 3 months adjusting for sociodemographics, clinical covariates and the trial intervention arm. Findings were similar for 6 month outcome models. CONCLUSIONS: Change in physical activity did not explain future clinical outcomes of pain and function in this study. Other factors may be responsible for clinical improvements following exercise interventions. However, the PASE may not be sufficiently responsive to measure change in physical activity level. We also recommend further investigation into the responsiveness of commonly used physical activity measures. TRIAL REGISTRATION: ( ISRCTN93634563 ). Registered 29th September 2011

    Social difference, cultural arbitrary and identity : an analysis of a new national curriculum document in a non-secular environment

    Get PDF
    This article focuses on the idea of the Curriculum as a 'selection from the cultures of society' and as a site of contestation for legitimacy and identity affirmation. The purpose is to shed some light on the nature of curricular reform being advocated in a specific context - Malta. Throughout the past four years, there has been a revamping of the National Minimum Curriculum (NMC) document in Malta, established in 1988. The 'old' National Minimum Curriculum was subject to criticism focusing on a variety of issues (echoing criticisms levelled at similar National Curricula elsewhere), including issues concerning difference and identity. The first part of the article deals briefly with the issues concerning difference raised in this criticism, focusing on the issues of class, race/ethnicity, gender and disability. The second part focuses on the long and gradual build up towards the development of the new National Curriculum document. The process centres around two documents, the preliminary Tomorrow's Schoolsdocument and the draft NMC document. The issues of equity and the affirmation of social difference, as well as the move towards de-streaming, are discussed. It is argued that this process of reform benefited from the criticism of the earlier NMC document. The process of reform involved an attempt at widespread participation by various stakeholders - parents, teachers, students, unions, women's organisations, disabled person's organisations etc. The final section focuses on the final new NMC document. In this section, the authors explore the compromises, which have been made in reaction to the draft document, indicating the interests at play. Whose cultural arbitrary is reflected in the final document? The article concludes with a discussion centring around lessons to be drawn from a process of curricular reform, involving issues related to identity and difference, carried out in a country characterised by a non-secular environment.peer-reviewe

    Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging

    No full text
    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.</p
    corecore