43 research outputs found

    Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs

    Get PDF
    Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2.8 and 7.1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2.8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2.8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2.8 kb RNA. Furthermore, the splicing pattern did not change when the 2.8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase

    ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages

    Get PDF
    The mammalian ATP-binding cassette transporters A1 and A7 (ABCA1 and -A7) show sequence similarity to CED-7, a Caenorhabditis elegans gene that mediates the clearance of apoptotic cells. Using RNA interference or gene targeting, we show that knock down of macrophage ABCA7 but not -A1 results in defective engulfment of apoptotic cells. In response to apoptotic cells, ABCA7 moves to the macrophage cell surface and colocalizes with the low-density lipoprotein receptor–related protein 1 (LRP1) in phagocytic cups. The cell surface localization of ABCA7 and LRP1 is defective in ABCA7-deficient cells. C1q is an opsonin of apoptotic cells that acts via phagocyte LRP1 to induce extracellular signal–regulated kinase (ERK) signaling. We show that ERK signaling is required for phagocytosis of apoptotic cells and that ERK phosphorylation in response to apoptotic cells or C1q is defective in ABCA7-deficient cells. These studies reveal a major role of ABCA7 and not -A1 in the clearance of apoptotic cells and therefore suggest that ABCA7 is an authentic orthologue of CED-7

    Area deprivation and demographic factors associated with diabetes technology use in adults with type 1 diabetes in Germany

    Get PDF
    IntroductionDiabetes technology improves glycemic control and quality of life for many people with type 1 diabetes (T1D). However, inequalities in access to diabetes technology exist in many countries. In Germany, disparities in technology use have been described in pediatric T1D, but no data for adults are available so far. We therefore aimed to analyze whether demographic factors and area deprivation are associated with technology use in a representative population of adults with T1D.Materials and methodsIn adults with T1D from the German prospective diabetes follow-up registry (DPV), we analyzed the use of continuous subcutaneous insulin infusion (CSII), continuous glucose monitoring (CGM), and sensor augmented pump therapy (SAP, with and without automated insulin delivery) in 2019-2021 by age group, gender, migration background, and area deprivation using multiple adjusted regression models. Area deprivation, defined as a relative lack of area-based resources, was measured by quintiles of the German index of Multiple Deprivation (GIMD 2015, from Q1, least deprived, to Q5, most deprived districts).ResultsAmong 13,351 adults with T1D, the use of technology decreased significantly with older age: CSII use fell from 56.1% in the 18−<25-year age group to 3.1% in the ≥80-year age group, CGM use from 75.3% to 28.2%, and SAP use from 45.1% to 1.5% (all p for trend <0.001). The use of technology was also significantly higher in women than in men (CSII: 39.2% vs. 27.6%; CGM: 61.9% vs. 58.0%; SAP: 28.7% vs. 19.6%, all p <0.001), and in individuals without migration background than in those with migration background (CSII: 38.8% vs. 27.6%; CGM: 71.1% vs. 61.4%; SAP: 30.5% vs. 21.3%, all p <0.001). Associations with area deprivation were not linear: the use of each technology decreased only from Q2 to Q4.DiscussionOur real-world data provide evidence that higher age, male gender, and migration background are currently associated with lower use of diabetes technology in adults with T1D in Germany. Associations with area deprivation are more complex, probably due to correlations with other factors, like the higher proportion of migrants in less deprived areas or the federal structure of the German health care system

    CD40L Deficiency Attenuates Diet-Induced Adipose Tissue Inflammation by Impairing Immune Cell Accumulation and Production of Pathogenic IgG-Antibodies

    Get PDF
    BACKGROUND: Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: WT or CD40L(-/-) mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/-) mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/-) mice. However, CD40L(-/-) mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/-) mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION: We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease

    Cooperation between Engulfment Receptors: The Case of ABCA1 and MEGF10

    Get PDF
    The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm, it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7. Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway

    Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease

    Get PDF
    Abstract: Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)

    A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data

    Get PDF
    © 2016, The Author(s). Microsatellites are useful tools for ecologists and conservationist biologists, but are taxa-specific and traditionally expensive and time-consuming to develop. New methods using next-generation sequencing (NGS) have reduced these problems, but the plethora of software available for processing NGS data may cause confusion and difficulty for researchers new to the field of bioinformatics. We developed a bioinformatics pipeline for microsatellite development from Illumina paired-end sequences, which is packaged in the open-source bioinformatics tool Galaxy. This optimises and streamlines the design of a microsatellite panel and provides a user-friendly graphical user interface. The pipeline utilises existing programs along with our own novel program and wrappers to: quality-filter and trim reads (Trimmomatic); generate sequence quality reports (FastQC); identify potentially-amplifiable microsatellite loci (Pal_finder); design primers (Primer3); assemble pairs of reads to enhance marker amplification success rates (PANDAseq); and filter optimal loci (Pal_filter). The complete pipeline is freely available for use via a pre-configured Galaxy instance, accessible at https://palfinder.ls.manchester.ac.uk
    corecore