167 research outputs found

    A rapid and sensitive assay for quantification of siRNA efficiency and specificity

    Get PDF
    RNA Interference has rapidly emerged as an efficient procedure for knocking down gene expression in model systems. However, cross-reactivity, whereby multiple genes may be simultaneously targeted by a single short interfering RNA (siRNA), can potentially jeopardize correct interpretation of gene function. As such, it is essential to test the specificity of a siRNA prior to a full phenotypic analysis. To this end, we have adapted a reporter-based assay harnessing the sensitivity of luciferase activity to provide a quantitative readout of relative RNAi efficacy and specificity. We have tested different siRNAs directed against Thymosin β4 (Tβ4); determined their effectiveness at silencing Tβ4 and have both excluded off-target silencing of the Tβ4 homologue Thymosin β10 (Tβ10) and demonstrated partial knockdown of Tβ10 despite significant (12/23; 52%) sequence mismatch. This assay system is applicable to any RNAi study where there is a risk of targeting homologous genes and to the monitoring of off-target effects at the genome level following microarray expression profiling

    Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium

    Get PDF
    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine

    Asymmetric triplex metallohelices with high and selective activity against cancer cells

    Get PDF
    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and ​p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 ​p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli. At a glanc

    Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

    Get PDF
    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.This work is supported by National Institutes of Health Grants R37 GM062534 (to G.J.H.) and R01-HG006677 (to M.S.); National Science Foundation Grant DBI-1350041 (to M.S.); and a Swiss National Science Foundation Grant 31003A-143732 (to L.S.). This work was performed with assistance from Cold Spring Harbor Laboratory Shared Resources, which are funded, in part, by Cancer Center Support Grant 5P30CA045508.This is the final version of the article. It first appeared from PNAS via http://dx.doi.org/10.1073/pnas.151671811

    Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis

    Get PDF
    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands

    Families’ roles in children’s literacy in the UK throughout the 20th century

    Get PDF
    This paper explores the changing roles of families in children’s developing literacy in the UK in the last century. It discusses how, during this time, understandings of reading and writing have evolved into the more nuanced notion of literacy. Further, in acknowledging changes in written communication practices, and shifting attitudes to reading and writ- ing, the paper sketches out how families have always played some part in the literacy of younger generations; though reading was frequently integral to the lives of many families throughout the past century, we consider in particular the more recent enhancement of children’s literacy through targeted family programmes. The paper considers policy implications for promoting young children’s literacy through work with families

    MTDATA and the prediction of phase equilibria in oxide systems : 30 years of industrial collaboration

    Get PDF
    This paper gives an introduction to MTDATA, Phase Equilibrium Software from the National Physical Laboratory (NPL), and describes the latest advances in the development of a comprehensive database of thermodynamic parameters to underpin calculations of phase equilibria in large oxide, sulfide, and fluoride systems of industrial interest. The database, MTOX, has been developed over a period of thirty years based upon modeling work at NPL and funded by industrial partners in a project co-ordinated by Mineral Industry Research Organisation. Applications drawn from the fields of modern copper scrap smelting, high-temperature behavior of basic oxygen steelmaking slags, flash smelting of nickel, electric furnace smelting of ilmenite, and production of pure TiO2via a low-temperature molten salt route are discussed along with calculations to assess the impact of impurities on the uncertainty of fixed points used to realize the SI unit of temperature, the kelvin

    Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    Get PDF
    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans)

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)National Science Foundation (Grant ECS 84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
    corecore