9 research outputs found

    Mechanisms of current therapies for diabetes mellitus type 2

    No full text

    Hepatic insulin gene therapy prevents diabetic enteropathy in STZ-treated CD-1 mice

    No full text
    Depending on the population examined, from 6 to 83% of people with diabetes mellitus exhibit symptoms of altered gut motility, manifesting as dysphagia, reflux, early satiety, nausea, abdominal pain, diarrhea, or constipation. Hyperglycemia-induced cell loss within the enteric nervous system has been demonstrated in both diabetic rodents and patients with diabetes. Glycemic control is recommended to prevent diabetic gastroenteropathy but is often difficult to achieve with current treatment modalities. We asked if hepatic insulin gene therapy (HIGT) could inhibit the development of diabetic gastroenteropathy in mice. Bowel length, bowel transit, colonic muscle relaxation, and the numbers of both stimulatory and inhibitory neurons in the colonic myenteric plexus were compared in groups of diabetic mice (DM), control nondiabetic mice (Con), and diabetic mice treated with HIGT (HIGT). Delivery of a metabolically responsive insulin transgene to the liver of STZ-diabetic mice with an adeno-associated virus, sero-type 8 (AAV8) produced near-normal blood sugars for over 1 month and prevented anatomic, functional, and neurohistologic changes observed in diabetic mice. We conclude that in addition to normalizing oxidative metabolism in diabetic rodents, HIGT is sufficient to prevent the development of diabetic gastroenteropathy

    Bioartificial matrices for therapeutic vascularization

    No full text
    Therapeutic vascularization remains a significant challenge in regenerative medicine applications. Whether the goal is to induce vascular growth in ischemic tissue or scale up tissue-engineered constructs, the ability to induce the growth of patent, stable vasculature is a critical obstacle. We engineered polyethylene glycol–based bioartificial hydrogel matrices presenting protease-degradable sites, cell-adhesion motifs, and growth factors to induce the growth of vasculature in vivo. Compared to injection of soluble VEGF, these matrices delivered sustained in vivo levels of VEGF over 2 weeks as the matrix degraded. When implanted subcutaneously in rats, degradable constructs containing VEGF and arginine-glycine-aspartic acid tripeptide induced a significant number of vessels to grow into the implant at 2 weeks with increasing vessel density at 4 weeks. The mechanism of enhanced vascularization is likely cell-demanded release of VEGF, as the hydrogels may degrade substantially within 2 weeks. In a mouse model of hind-limb ischemia, delivery of these matrices resulted in significantly increased rate of reperfusion. These results support the application of engineered bioartificial matrices to promote vascularization for directed regenerative therapies
    corecore