8 research outputs found

    Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry

    No full text
    Globally, rapid urbanisation is one of the major drivers for land-use changes, many of which have a marked impact on urban air quality. Urban forestry has been increasingly proposed as a means of reducing airborne pollutants; however, limited studies have comparatively assessed land-use types, including urban forestry, for their relationship with air pollution on a city scale. We, thus, investigated the spatial relationships between three air pollutant concentrations, NO2, SO2, and PM10, and different land uses and land covers across a major city, by constructing a yearly average model combining these variables. Additionally, relationships between different vegetation types and air pollutant concentrations were investigated to determine whether different types of vegetation are associated with different air pollutants. Parklands, water bodies, and more specifically, broadleaf evergreen forest and mangrove vegetation were associated with lower pollutant concentrations. These findings support urban forestry’s capabilities to mitigate air pollution across a city-wide scale

    The power of citizen science to advance fungal conservation

    No full text
    Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be leveraged to advance fungal conservation efforts. We present several examples of past and ongoing CS‐based projects to record and monitor fungal diversity. These include projects that are part of broad collecting schemes, those that provide participants with targeted sampling methods, and those whereby participants collect environmental samples from which fungi can be obtained. We also examine challenges and solutions for how such projects can capture fungal diversity, estimate species absences, broaden participation, improve data curation, and translate resulting data into actionable conservation measures. Finally, we close the paper with a call for professional mycologists to engage with amateurs and local communities, presenting a framework to determine whether a given project would likely benefit from participation by citizen scientists
    corecore