2,152 research outputs found

    Relative Factor Price Changes and Equity Prices

    Get PDF
    This paper suggests that the decline in equity prices, and thus in Tobin's average q, during the 1970s may be attributable to changes in expected relative factor prices. More specifically, q is shown to be a negative function of the extent to which current relative factor price expectations differ from those when capital was put in place. Because relative factor prices became more volatile after 1967, the observed decline in average q, and thus in stock prices, can be explained by the "relative price" hypothesis.

    Microbiologic follow-up study in adult bronchiectasis

    Get PDF
    SummaryThere is minimal published longitudinal data about pathogenic microorganisms in adults with bronchiectasis. Therefore a study was undertaken to assess the microbiologic profile over time in bronchiectasis.A prospective study of clinical and microbiologic outcomes was performed. Subjects were assessed by a respiratory physician and sputum sample were collected for analysis. Subjects were followed up and had repeat assessment performed.Eighty-nine subjects were followed up for a period of 5.7±3.6 years. On initial assessment the two most common pathogens isolated were Haemophilus influenzae (47%) and Pseudomonas aeruginosa (12%) whilst 21% had no pathogens isolated. On follow-up review results were similar (40% H. influenzae, 18% P. aeruginosa and 26% no pathogens). The prevalence of antibiotic resistance of isolates increased from 13% to 30%. Analysis of a series of H. influenzae isolates showed they were nearly all nontypeable and all were different subtypes. Subjects with no pathogens isolated from their sputum had the mildest disease, while subjects with P. aeruginosa had the most severe bronchiectasis.Many subjects with bronchiectasis are colonized with the same bacterium over an average follow-up of 5 years. Different pathogens are associated with different patterns of clinical disease

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Ground-motion prediction models for induced earthquakes in the Groningen gas field, the Netherlands

    Get PDF
    Small-magnitude earthquakes induced by gas production in the Groningen field in the Netherlands have prompted the development of seismic risk models that serve both to estimate the impact of these events and to explore the efficacy of different risk mitigation strategies. A core element of the risk modelling is ground-motion prediction models (GMPM) derived from an extensive database of recordings obtained from a dense network of accelerographs installed in the field. For the verification of damage claims, an empirical GMPM for peak ground velocity (PGV) has been developed, which predicts horizontal PGV as a function of local magnitude, ML; hypocentral distance, Rhyp; and the time-averaged shear-wave velocity over the upper 30 m, VS30. For modelling the risk due to potential induced and triggered earthquakes of larger magnitude, a GMPM for response spectral accelerations has been developed from regressions on the outputs from finite-rupture simulations of motions at a deeply buried rock horizon. The GMPM for rock motions is coupled with a zonation map defining frequency-dependent non-linear amplification factors to obtain estimates of surface motions in the region of thick deposits of soft soils. The GMPM for spectral accelerations is formulated within a logic-tree framework to capture the epistemic uncertainty associated with extrapolation from recordings of events of ML ≤ 3.6 to much larger magnitudes

    The Primordial Inflation Polarization Explorer (PIPER): Current Status and Performance of the First Flight

    Get PDF
    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the CMB at large angular scales. It will map 85% of the sky over a series of conventional balloon flights from the Northern and Southern hemispheres, measuring the B-mode polarization power spectrumover a range of multipoles from 2-300 covering both the reionization bump and the recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007. PIPER will observe in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds. The instrument has background-limited sensitivity provided by fully cryogenic (1.7 K) optics focusing the sky signal onto kilo-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 100 mK. Polarization sensitivity and systematiccontrol are provided by front-end Variable-delay Polarization Modulators (VPMs). PIPER had its engineering flight in October 2017 from Fort Sumner, New Mexico. This papers outlines the major components in the PIPER system discussing the conceptual design as well as specific choices made for PIPER. We also report on the results of the engineering flight, looking at the functionality of the payload systems, particularly VPM, as well as pointing out areas of improvement

    Addressing nanomaterial immunosafety by evaluating innate immunity across living species

    Get PDF
    The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVbh^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    Star and dust formation activities in AzTEC-3: A starburst galaxy at z = 5.3

    Get PDF
    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with a SFR of ~500 Msun/yr. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.Comment: Accepted for publication in the ApJ. 12 pages with 11 embedded figure

    Ground-motion prediction models for induced earthquakes in the Groningen gas field, the Netherlands

    Get PDF
    Small-magnitude earthquakes induced by gas production in the Groningen field in the Netherlands have prompted the development of seismic risk models that serve both to estimate the impact of these events and to explore the efficacy of different risk mitigation strategies. A core element of the risk modelling is ground-motion prediction models (GMPM) derived from an extensive database of recordings obtained from a dense network of accelerographs installed in the field. For the verification of damage claims, an empirical GMPM for peak ground velocity (PGV) has been developed, which predicts horizontal PGV as a function of local magnitude, ML; hypocentral distance, Rhyp; and the time-averaged shear-wave velocity over the upper 30 m, VS30. For modelling the risk due to potential induced and triggered earthquakes of larger magnitude, a GMPM for response spectral accelerations has been developed from regressions on the outputs from finite-rupture simulations of motions at a deeply buried rock horizon. The GMPM for rock motions is coupled with a zonation map defining frequency-dependent non-linear amplification factors to obtain estimates of surface motions in the region of thick deposits of soft soils. The GMPM for spectral accelerations is formulated within a logic-tree framework to capture the epistemic uncertainty associated with extrapolation from recordings of events of ML ≤ 3.6 to much larger magnitudes
    corecore