92 research outputs found

    Genetic regulation of glucoraphanin accumulation in Beneforté® broccoli

    Get PDF
    Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression The high-glucoraphanin broccoli hybrids contained 2.5–3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforte broccoli. The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studie

    Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing.

    Get PDF
    Seedling emergence timing is crucial in competitive plant communities and so contributes to species fitness. To understand the mechanistic basis of variation in seedling emergence timing, we exploited the contrasting behaviour of two Arabidopsis ecotypes; Cape Verde island (Cvi) and Burren (Bur-0). We used RNAseq analysis of RNA from exhumed seeds and quantitative trait loci (QTL) analyses on a mapping population from crossing the Cvi and Bur-0 ecotypes. We determined genome-wide expression patterns over an annual dormancy cycle in both ecotypes identifying nine major clusters based on the seasonal timing of gene expression, and variation in behaviour between them. QTL were identified for depth of seed dormancy and Seedling Emergence Timing (SET). Both analyses showed a key role for DOG1 in determining depth of dormancy, but did not support a direct role for DOG1 in generating altered seasonal patterns of seedling emergence. The principle QTL determining Seedling Emergence Timing (SET1: dormancy cycling) is physically close on chromosome 5, but distinct from DOG1. We show that SET1 and two other SET QTLs each contain a candidate gene (AHG1, ANAC60, PDF1 respectively) closely associated to DOG1 and abscisic acid signalling and suggest a model for the control of SET in the field

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Exploring the equity of GP practice prescribing rates for selected coronary heart disease drugs: a multiple regression analysis with proxies of healthcare need

    Get PDF
    Background There is a small, but growing body of literature highlighting inequities in GP practice prescribing rates for many drug therapies. The aim of this paper is to further explore the equity of prescribing for five major CHD drug groups and to explain the amount of variation in GP practice prescribing rates that can be explained by a range of healthcare needs indicators (HCNIs). Methods The study involved a cross-sectional secondary analysis in four primary care trusts (PCTs 1–4) in the North West of England, including 132 GP practices. Prescribing rates (average daily quantities per registered patient aged over 35 years) and HCNIs were developed for all GP practices. Analysis was undertaken using multiple linear regression. Results Between 22–25% of the variation in prescribing rates for statins, beta-blockers and bendrofluazide was explained in the multiple regression models. Slightly more variation was explained for ACE inhibitors (31.6%) and considerably more for aspirin (51.2%). Prescribing rates were positively associated with CHD hospital diagnoses and procedures for all drug groups other than ACE inhibitors. The proportion of patients aged 55–74 years was positively related to all prescribing rates other than aspirin, where they were positively related to the proportion of patients aged >75 years. However, prescribing rates for statins and ACE inhibitors were negatively associated with the proportion of patients aged >75 years in addition to the proportion of patients from minority ethnic groups. Prescribing rates for aspirin, bendrofluazide and all CHD drugs combined were negatively associated with deprivation. Conclusion Although around 25–50% of the variation in prescribing rates was explained by HCNIs, this varied markedly between PCTs and drug groups. Prescribing rates were generally characterised by both positive and negative associations with HCNIs, suggesting possible inequities in prescribing rates on the basis of ethnicity, deprivation and the proportion of patients aged over 75 years (for statins and ACE inhibitors, but not for aspirin)

    Assembly and characterisation of a unique onion diversity set identifies resistance to Fusarium basal rot and improved seedling vigour

    Get PDF
    Conserving biodiversity is critical for safeguarding future crop production. Onion (Allium cepa L.) is a globally important crop with a very large (16 Gb per 1C) genome which has not been sequenced. While onions are self-fertile, they suffer from severe inbreeding depression and as such are highly heterozygous as a result of out-crossing. Bulb formation is driven by daylength, and accessions are adapted to the local photoperiod. Onion seed is often directly sown in the field, and hence seedling establishment is a critical trait for production. Furthermore, onion yield losses regularly occur worldwide due to Fusarium basal rot caused by Fusarium oxysporum f. sp. cepae. A globally relevant onion diversity set, consisting of 10 half-sib families for each of 95 accessions, was assembled and genotyping carried out using 892 SNP markers. A moderate level of heterozygosity (30–35%) was observed, reflecting the outbreeding nature of the crop. Using inferred phylogenies, population structure and principal component analyses, most accessions grouped according to local daylength. A high level of intra-accession diversity was observed, but this was less than inter-accession diversity. Accessions with strong basal rot resistance and increased seedling vigour were identified along with associated markers, confirming the utility of the diversity set for discovering beneficial traits. The onion diversity set and associated trait data therefore provide a valuable resource for future germplasm selection and onion breeding

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted.</p> <p>Methods</p> <p>We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS).</p> <p>Results</p> <p>Statistically significant associations with asthma were observed for SNPs in <it>GSTM1, MS4A2</it>, and <it>GSTP1 </it>genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to <it>MS4A2 </it>rs574700, rs1441586, rs556917, rs502581, rs502419 and <it>GSTP1 </it>rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, <it>p </it>= 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; <it>p </it>= 0.001).</p> <p>Conclusions</p> <p>Variation in genes associated with asthma in predominantly non-African ethnic groups contributed to increased odds of asthma in this African American study population. Evaluating all significant variants in concert helped to identify the highest risk subset of this group.</p

    Trait to gene analysis reveals that allelic variation in three genes determines seed vigour

    Get PDF
    Predictable seedling establishment is essential for resource-efficient and cost-effective crop production; it is widely accepted as a critically important trait determining yield and profitability. Seed vigour is essential to this, but its genetic basis is not understood. We used natural variation and fine mapping in the crop Brassica oleracea to show that allelic variation at three loci influence the key vigour trait of rapid germination. Functional analysis in both B. oleracea and the model Arabidopsis identified and demonstrated activity of genes at these loci. Two candidate genes were identified at the principal Speed of Germination QTL (SOG1) in B. oleracea. One gene BoLCVIG2 is a homologue of the alternative-splicing regulator (AtPTB1). The other gene BoLCVIG1 was unknown, but different alleles had different splice forms that were coincident with altered abscisic acid (ABA) sensitivity. We identified a further QTL, Reduced ABscisic Acid 1 (RABA1) that influenced ABA content and provide evidence that this results from the activity of a homologue of the ABA catabolic gene AtCYP707A2 at this locus. Lines containing beneficial alleles of these three genes had greater seed vigour. We propose a mechanism in which both seed ABA content and sensitivity to it determines speed of germination

    A Genome-Wide Association Study Identifies rs2000999 as a Strong Genetic Determinant of Circulating Haptoglobin Levels

    Get PDF
    Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far
    corecore