2,217 research outputs found

    CD4+ T cell hyporesponsiveness after repeated exposure to Schistosoma mansoni larvae is dependent upon interleukin-10

    Get PDF
    The effect that multiple percutaneous exposures to Schistosoma larvae has on the development of early CD4+ lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) of Schistosoma mansoni cercariae, compared to a single dose (1×), results in CD4+ T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+ cell proliferation and cytokine production. FoxP3+ CD4+ regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+ cell population from 4× mice was slight, as proliferation was only partly circumvented through the in vitro addition of exogenous interleukin-2 (IL-2), and the in vivo blockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+ cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+ cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+ T cell hyporesponsiveness after repeated parasite exposure involving CD4+ cell apoptosis

    Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Get PDF
    BACKGROUND: The evolutionary importance of horizontal gene transfer (HGT) from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. RESULTS: We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis), suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. CONCLUSION: The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation

    Dating submarine landslides using the transient response of gas hydrate stability

    Get PDF
    Submarine landslides are prevalent on the modern-day seafloor, yet an elusive problem is constraining the timing of past slope failure. We present a novel age-dating technique based on perturbations to underlying gas hydrate stability caused by slide-impacted seafloor changes. Using three-dimensional (3-D) seismic data, we mapped an irregular bottom simulating reflection (BSR) underneath a submarine landslide in the Orca Basin, Gulf of Mexico. The irregular BSR mimics the pre-slide seafloor geometry rather than the modern bathymetry. Therefore, we suggest that the gas hydrate stability zone (GHSZ) is still adjusting to the post-slide sediment temperature. We applied transient conductive heat-flow modeling to constrain the response of the GHSZ to the slope failure, which yielded a most likely age of ca. 8 ka, demonstrating that gas hydrate can respond to landslides even on multimillennial time scales. We further provide a generalized analytical solution that can be used to remotely date submarine slides in the absence of traditional dating technique

    Toward theories of partnership praxis: an analysis of interpretive framing in literature on students as partners in teaching and learning

    Get PDF
    A body of literature on students as partners (SaP) in higher education has emerged over the last decade that documents, shares, and evaluates SaP approaches. As is typical in emerging fields of inquiry, scholars differ regarding how they see the relationship between the developments in SaP practices and the theoretical explanations that guide, illuminate, and situate such practices. In this article we explore the relationship between theory and practice in SaP work through an analysis of interpretive framing employed in scholarship of SaP in teaching and learning in higher education. Through a conceptual review of selected publications, we describe three ways of framing partnership that represent distinct but related analytical approaches: building on concepts; drawing on constructs; and imagining through metaphors. We both affirm the expansive and creative theorising in scholarship of SaP in university teaching and learning and encourage further deliberate use and thoughtful development of interpretive framings that take seriously the disruptive ethos and messy human relational processes of partnership. We argue that these developmental processes move us toward formulating theories of partnership praxis

    Students as co-creators of teaching approaches, course design and curricula: implications for academic developers

    Get PDF
    Within higher education, students’ voices are frequently overlooked in the design of teaching approaches, courses and curricula. In this paper we outline the theoretical background to arguments for including students as partners in pedagogical planning processes. We present examples where students have worked collaboratively in design processes along with the beneficial outcomes of these examples. Finally we focus on some of the implications and opportunities for academic developers of proposing collaborative approaches to pedagogical planning

    Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks

    Get PDF
    The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth\u27s climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models
    corecore