22 research outputs found
Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling
In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways
Synthesis of 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase
Efficient routes to 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)pyrazolo[3,4-d]pyrimidin-4-amines using a one-pot two-step reaction are presented. The two routes give easy access to two different isomers of 1,4-disubstituted triazoles and the target compounds are obtained from a variety of readily available aromatic and aliphatic halides without isolation of potentially unstable organic azide intermediates. Two compounds show activity towards the PfPK7 kinase (IC(50) 10-20 microM) of P. falciparum, the organism responsible for the most virulent form of malaria, and can be regarded as hits useful for further development into lead compounds.INSERM-EPF
Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast
The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG)
pathway is a conserved mitogen-activated protein kinase (MAPK) signal
transduction system that often serves as a model to analyze systems level
properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be
activated by various environmental cues and it controls transcription,
translation, transport, and cell cycle adaptations in response to stress
conditions. A powerful means to study signaling in living cells is to use kinase
inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date.
Herein, we describe the design, synthesis, and biological application of small
molecule inhibitors that are cell-permeable, fast-acting, and highly efficient
against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase
activity both in vitro and in vivo. Next, we
use these novel inhibitors to pinpoint the time of Hog1 action during recovery
from G1 checkpoint arrest, providing further evidence for a specific
role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence,
we describe a novel tool for chemical genetic analysis of MAPK signaling and
provide novel insights into Hog1 action
Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA
To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA
Access to optically pure β-hydroxy esters via non-enzymatic kinetic resolution by a planar-chiral DMAP catalyst
The development of new approaches to obtain optically pure β-hydroxy esters is an important area in synthetic organic chemistry since they are precursors of other high value compounds. Herein, the kinetic resolution of racemic β-hydroxy esters using a planar-chiral DMAP derivative catalyst is presented. Following this procedure, a range of aromatic β-hydroxy esters was obtained in excellent selectivities (up to s = 107) and high enantiomeric excess (up to 99% ee). Furthermore, the utility of the present method was demonstrated in the synthesis of (S)-3-hydroxy-N-methyl-3-phenylpropanamide, a key intermediate for bioactive molecules such as fluoxetine, tomoxetine or nisoxetine, in its enantiomerically pure form.Alba E. DiazIvarez and Laura Mesas-Sanchez contributed equally to this work.</p
Student-Driven Development of Greener Chemistry in Undergraduate Teaching: Synthesis of Lidocaine Revisited
Green chemistry and sustainable development have become increasingly important topics for the education of future chemists, but the implementation of green chemistry into the chemistry curriculum requires significant efforts from teachers, especially in laboratory education. A student-driven development of a greener synthesis of Lidocaine was performed by three first-cycle, third-year students as a part of their B. Sc. degree project with the goal to implement the procedure in an under-graduate organic chemistry course. The students were merely provided with the framework for the project and were given the opportunity to independently develop the project based on an analysis of the 12 principles of green chemistry. The "greenification" of the Lidocaine synthesis by the three students led to several green improvements of the standard procedure, for example, (1) decreased reaction temperature, (2) solvent replacement, (3) fewer equivalents of the starting material (diethylamine) by the use of an inorganic bulk base, (4) use of catalytic amounts of potassium iodide to promote the Finkelstein reaction, and (5) a two-step one-pot procedure. Furthermore, one of the developed procedures was successfully implemented in a full-scale organic chemistry laboratory course.QC 20191209</p
Synthesis of Chiral 1,4-Disubstituted-1,2,3-Triazole Derivatives from Amino Acids
A versatile method for the synthesis of chiral 1,4-disubstituted-1,2,3-triazole derivatives starting from easily accessible naturally occurring D-or L-amino acids as chiral synthons is described. The amino acids were converted into azido alcohols, followed by copper catalyzed [3+2] cycloaddition reactions between the azido alcohols and methyl propiolate and subsequent ester aminolysis with primary and secondary amines furnished the target compounds, which were obtained in excellent yields with no racemization. Docking of selected target compounds shows that the chiral 1,4-disubstituted-1,2,3-triazoles derivatives has the potential of mimicking the binding mode of known purine analogues