11,586 research outputs found

    SIMULATING OZONE EFFECTS ON FOREST PRODUCTIVITY: INTERACTIONS AMONG LEAFā€, CANOPYā€, AND STANDā€LEVEL PROCESSES

    Get PDF
    Ozone pollution in the lower atmosphere is known to have adverse effects on forest vegetation, but the degree to which mature forests are impacted has been very difficult to assess directly. In this study, we combined leafā€level ozone response data from independent ozone fumigation studies with a forest ecosystem model in order simulate the effects of ambient ozone on mature hardwood forests. Reductions in leaf carbon gain were determined as a linear function of ozone flux to the leaf interior, calculated as the product of ozone concentration and leaf stomatal conductance. This relationship was applied to individual canopy layers within the model in order to allow interaction with standā€ and canopyā€level factors such as light attenuation, leaf morphology, soil water limitations, and vertical ozone gradients. The resulting model was applied to 64 locations across the northeastern United States using ambient ozone data from 1987 to 1992. Predicted declines in annual net primary production ranged from 3 to 16% with greatest reductions in southern portions of the region where ozone levels were highest, and on soils with high waterā€holding capacity where drought stress was absent. Reductions in predicted wood growth were slightly greater (3ā€“22%) because wood is a lower carbon allocation priority in the model than leaf and root growth. Interannual variation in predicted ozone effects was small due to concurrent fluctuations in ozone and climate. Periods of high ozone often coincided with hot, dry weather conditions, causing reduced stomatal conductance and ozone uptake. Withinā€canopy ozone concentration gradients had little effect on predicted growth reductions because concentrations remained high through upper canopy layers where net carbon assimilation and ozone uptake were greatest. Sensitivity analyses indicate a tradeā€off between model sensitivity to available soil water and foliar nitrogen and demonstrate uncertainties regarding several assumptions used in the model. Uncertainties surrounding ozone effects on stomatal function and plant water use efficiency were found to have important implications on current predictions. Field measurements of ozone effects on mature forests will be needed before the accuracy of model predictions can be fully assessed

    Investigations of meltwater refreezing and density variations in the snowpack and firn within the percolation zone of the Greenland Ice Sheet

    Get PDF
    The mass balance of polythermal ice masses is critically dependent on the proportion of surface-generated meltwater that subsequently refreezes in the snowpack and firn. In order to quantify this effect and to characterize its spatial variability, we measured near-surface (26%, resulting in a 32% increase in net accumulation. This 'seasonal densification' increased at lower elevations, rising to 47% 10 km closer to the ice-sheet margin at 1860 m a. s. l. Density/depth profiles from nine sites within 1 km2 at āˆ¼1945 m a.s.l. reveal complex stratigraphies that change over short spatial scales and seasonally. We conclude that estimates of mass-balance change cannot be calculated solely from observed changes in surface elevation, but that near-surface densification must also be considered. However, predicting spatial and temporal variations in densification may not be straightforward. Further, the development of complex firn-density profiles both masks discernible annual layers in the near-surface firn and ice stratigraphy and is likely to introduce error into radar-derived estimates of surface elevation

    Establishing New Legal Doctrine in Managed Care: A Model of Judicial Response to Industrial Change

    Get PDF
    Courts are struggling with how to develop legal doctrine in challenges to the new managed care environment. In this Article, we examine how courts have responded in the past to new industries or radical transformations of existing industries. We analyze two historical antecedents, the emergence of railroads in the nineteenth century and mass production in the twentieth century, to explore how courts might react to the current transformation of the health care industry. In doing so, we offer a model of how courts confront issues of developing legal doctrine, especially regarding liability, associated with nascent or dramatically transformed industries. Our model of doctrinal change includes five steps. The first step is the emergence of a nascent or transformed industry. In the second step, courts attempt to apply old doctrine to the nascent industry, resulting in a doctrinal mismatch with the realities of the new industry. When faced with this dilemma, the third step is that courts tend-implicitly or explicitly-to establish new legal doctrine that favors the industry. Then, in the fourth step, a backlash against the industry sets in while courts reassess rules favoring the industry. The last step is the emergence of a new doctrinal method of holding the nascent industry more fully accountable for its operations. After setting forth the model and its limitations, we discuss the implications for how courts have responded to the advent of managed care. Our historical analysis suggests that courts are reluctant to interfere with emerging market arrangements, such as managed care\u27s cost containment practices. Eventually, courts tend to find new ways to achieve greater accountability, largely arising from tort law concepts

    Formal Component-Based Semantics

    Get PDF
    One of the proposed solutions for improving the scalability of semantics of programming languages is Component-Based Semantics, introduced by Peter D. Mosses. It is expected that this framework can also be used effectively for modular meta theoretic reasoning. This paper presents a formalization of Component-Based Semantics in the theorem prover Coq. It is based on Modular SOS, a variant of SOS, and makes essential use of dependent types, while profiting from type classes. This formalization constitutes a contribution towards modular meta theoretic formalizations in theorem provers. As a small example, a modular proof of determinism of a mini-language is developed.Comment: In Proceedings SOS 2011, arXiv:1108.279

    Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems

    Get PDF
    In Ollinger et al. (1), we reported that mass-based concentrations of nitrogen in forest canopies (%N) are positively associated with whole-canopy photosynthetic capacity and canopy shortwave albedo in temperate and boreal forests, the latter result stemming from a positive correlation between %N and canopy near infrared (NIR) reflectance. This finding is intriguing because a functional link between %N and NIR reflectance could indicate an influence of nitrogen cycling on surface energy exchange, and could provide a means for estimating %N using broad-band satellite sensors

    Targeting determinants of dosage compensation in Drosophila

    Get PDF
    The dosage compensation complex (DCC) in Drosophila melanogaster is responsible for up-regulating transcription from the single male X chromosome to equal the transcription from the two X chromosomes in females. Visualization of the DCC, a large ribonucleoprotein complex, on male larval polytene chromosomes reveals that the complex binds selectively to many interbands on the X chromosome. The targeting of the DCC is thought to be in part determined by DNA sequences that are enriched on the X. So far, lack of knowledge about DCC binding sites has prevented the identification of sequence determinants. Only three binding sites have been identified to date, but analysis of their DNA sequence did not allow the prediction of further binding sites. We have used chromatin immunoprecipitation to identify a number of new DCC binding fragments and characterized them in vivo by visualizing DCC binding to autosomal insertions of these fragments, and we have demonstrated that they possess a wide range of potential to recruit the DCC. By varying the in vivo concentration of the DCC, we provide evidence that this range of recruitment potential is due to differences in affinity of the complex to these sites. We were also able to establish that DCC binding to ectopic high-affinity sites can allow nearby low-affinity sites to recruit the complex. Using the sequences of the newly identified and previously characterized binding fragments, we have uncovered a number of short sequence motifs, which in combination may contribute to DCC recruitment. Our findings suggest that the DCC is recruited to the X via a number of binding sites of decreasing affinities, and that the presence of high-and moderate-affinity sites on the X may ensure that lower-affinity sites are occupied in a context-dependent manner. Our bioinformatics analysis suggests that DCC binding sites may be composed of variable combinations of degenerate motifs

    Hybrid phase-space simulation method for interacting Bose fields

    Get PDF
    We introduce an approximate phase-space technique to simulate the quantum dynamics of interacting bosons. With the future goal of treating Bose-Einstein condensate systems, the method is designed for systems with a natural separation into highly occupied (condensed) modes and lightly occupied modes. The method self-consistently uses the Wigner representation to treat highly occupied modes and the positive-P representation for lightly occupied modes. In this method, truncation of higher-derivative terms from the Fokker-Planck equation is usually necessary. However, at least in the cases investigated here, the resulting systematic error, over a finite time, vanishes in the limit of large Wigner occupation numbers. We tested the method on a system of two interacting anharmonic oscillators, with high and low occupations, respectively. The Hybrid method successfully predicted atomic quadratures to a useful simulation time 60 times longer than that of the positive-P method. The truncated Wigner method also performed well in this test. For the prediction of the correlation in a quantum nondemolition measurement scheme, for this same system, the Hybrid method gave excellent agreement with the exact result, while the truncated Wigner method showed a large systematic error.Comment: 13 pages; 6 figures; references added; figures correcte

    Kinetics of dissolution of Ī²-uranium trioxide in acid and carbonate solutions

    Full text link
    • ā€¦
    corecore