517 research outputs found
Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans
Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons
Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury
ISO LWS Spectroscopy of M82: A Unified Evolutionary Model
We present the first complete far-infrared spectrum (43 to 197 um) of M82,
the brightest infrared galaxy in the sky, taken with the Long Wavelength
Spectrometer of the Infrared Space Observatory (ISO). We detected seven fine
structure emission lines, [OI] 63 and 145 um, [OIII] 52 and 88 um, [NII] 122
um, [NIII] 57 um and [CII] 158 um, and fit their ratios to a combination
starburst and photo-dissociation region (PDR) model. The best fit is obtained
with HII regions with n = 250 cm^{-3} and an ionization parameter of 10^{-3.5}
and PDRs with n = 10^{3.3} cm^{-3} and a far-ultraviolet flux of G_o =
10^{2.8}. We applied both continuous and instantaneous starburst models, with
our best fit being a 3-5 Myr old instantaneous burst model with a 100 M_o
cut-off. We also detected the ground state rotational line of OH in absorption
at 119.4 um. No excited level OH transitions are apparent, indicating that the
OH is almost entirely in its ground state with a column density ~ 4x10^{14}
cm^{-2}. The spectral energy distribution over the LWS wavelength range is well
fit with a 48 K dust temperature and an optical depth, tau_{Dust} proportional
to lambda^{-1}.Comment: 23 pages, 4 figures, accepted by ApJ, Feb. 1, 199
Systems Approaches in Osteoarthritis: Identifying Routes to Novel Diagnostic and Therapeutic Strategies
Discovery of Interstellar Hydrogen Fluoride
We report the first detection of interstellar hydrogen fluoride. Using the
Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we
have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the
far-infrared continuum source Sagittarius B2. The detection is statistically
significant at the 13 sigma level. On the basis of our model for the excitation
of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a
hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance
of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts
for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to
be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed
rapidly in exothermic reactions of atomic fluorine with either water or
molecular hydrogen; thus the measured HF abundance suggests a substantial
depletion of fluorine onto dust grains. Similar conclusions regarding depletion
have previously been reached for the case of chlorine in dense interstellar
clouds. We also find evidence at a lower level of statistical significance (~ 5
sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3)
121.7219 micron line of water. The emission line equivalent width of 0.5 nm for
the water feature is consistent with the water abundance of 5E-6 relative to H2
that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ
Letter
Recommended from our members
Vascular changes in diabetic retinopathy-a longitudinal study in the Nile rat.
Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies
Cobalt complexes with tripodal ligands: implications for the design of drug chaperones
Extensive research is currently being conducted into metal complexes that can selectively deliver cytotoxins to hypoxic regions in tumours. The development of pharmacologically suitable agents requires an understanding of appropriate ligand–metal systems for chaperoning cytotoxins. In this study, cobalt complexes with tripodal tren (tris-(2-aminoethyl)amine) and tpa (tris-(2 pyridylmethyl)amine) ligands were prepared with ancillary hydroxamic acid, β-diketone and catechol ligands and several parameters, including: pKa, reduction potential and cytotoxicity were investigated. Fluorescence studies demonstrated that only tpa complexes with β-diketones showed any reduction by ascorbate in situ and similarly, cellular cytotoxicity results demonstrated that ligation to cobalt masked the cytotoxicity of the ancillary groups in all complexes except the tpa diketone derivative [Co(naac)tpa](ClO4)2 (naac = 1-methyl-3-(2-naphthyl)- propane-1,3-dione). Additionally, it was shown that the hydroxamic acid complexes could be isolated in both the hydroxamate and hydroximate form and the pKa values (5.3–8.5) reveal that the reversible protonation/deprotonation of the complexes occurs at physiologically relevant pHs. These results have clear implications for the future design of prodrugs using cobalt moieties as chaperones, providing a basis for the design of cobalt complexes that are both more readily reduced and more readily taken up by cells in hypoxic and acidic environments
Specialization of tendon mechanical properties results from interfascicular differences
Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage
Self-assembly and charge transport properties of a benzobisthiazole end-capped with dihexylthienothiophene units
The synthesis of a new conjugated material is reported; BDHTT–BBT features a central electron-deficient benzobisthiazole capped with two 3,6-dihexyl-thieno[3,2-b]thiophenes. Cyclic voltammetry was used to determine the HOMO (−5.7 eV) and LUMO (−2.9 eV) levels. The solid-state properties of the compound were investigated by X-ray diffraction on single-crystal and thin-film samples. OFETs were constructed with vacuum deposited films of BDHTT–BBT. The films displayed phase transitions over a range of temperatures and the morphology of the films affected the charge transport properties of the films. The maximum hole mobility observed from bottom-contact, top-gate devices was 3 × 10−3 cm2 V−1 s−1, with an on/off ratio of 104–105 and a threshold voltage of −42 V. The morphological and self-assembly characteristics versus electronic properties are discussed for future improvement of OFET devices
Contrasting crystal packing arrangements in triiodide salts of radical cations of chiral bis(pyrrolo[3,4-d])tetrathiafulvalenes
Crystal structures of six 1 : 1 triiodide salts of a series of enantiopure bis(pyrrolo[3,4-d])TTF derivatives, the first structures of radical cation salts reported for this bis(pyrrolo) donor system, show three different arrangements of triiodide ions, organised either in head-to-tail pairs, in infinite lines, or in a castellated arrangement. The complex crystal structures, obtained by electrocrystallisation, are influenced by the presence of solvent, for example changing an ABCABC packing arrangement to ABAB with inclusion of THF, as well as by the size of the chiral side chain
- …
