57 research outputs found

    On the feasibility of using TCR sequencing to follow a vaccination response – lessons learned

    Get PDF
    T cells recognize pathogens by their highly specific T-cell receptor (TCR), which can bind small fragments of an antigen presented on the Major Histocompatibility Complex (MHC). Antigens that are provided through vaccination cause specific T cells to respond by expanding and forming specific memory to combat a future infection. Quantification of this T-cell response could improve vaccine monitoring or identify individuals with a reduced ability to respond to a vaccination. In this proof-of-concept study we use longitudinal sequencing of the TCRβ repertoire to quantify the response in the CD4+ memory T-cell pool upon pneumococcal conjugate vaccination. This comes with several challenges owing to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-specific TCRs in the total repertoire, and the variation in sample size and quality. We defined quantitative requirements to classify T-cell expansions and identified critical parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate vaccination, we were able to detect robust T-cell expansions in a minority of the donors, which suggests that the T-cell response against the conjugate in the pneumococcal vaccine is small and/or very broad. These results indicate that there is still a long way to go before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced protection. Nevertheless, this study highlights the importance of having multiple samples containing sufficient T-cell numbers, which will support future studies that characterize T-cell responses using longitudinal TCR sequencing

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis

    Study protocol: EXERcise and Cognition In Sedentary adults with Early-ONset dementia (EXERCISE-ON)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the development of early-onset dementia is a radical and invalidating experience for both patient and family there are hardly any non-pharmacological studies that focus on this group of patients. One type of a non-pharmacological intervention that appears to have a beneficial effect on cognition in older persons without dementia and older persons at risk for dementia is exercise. In view of their younger age early-onset dementia patients may be well able to participate in an exercise program. The main aim of the EXERCISE-ON study is to assess whether exercise slows down the progressive course of the symptoms of dementia.</p> <p>Methods/Design</p> <p>One hundred and fifty patients with early-onset dementia are recruited. After completion of the baseline measurements, participants living within a 50 kilometre radius to one of the rehabilitation centres are randomly assigned to either an <it>aerobic exercise program in a rehabilitation centre</it> or a <it>flexibility and relaxation program in a rehabilitation centre</it>. Both programs are applied three times a week during 3 months. Participants living outside the 50 kilometre radius are included in a feasibility study where participants join in a <it>daily physical activity program set at home making use of pedometers</it>. Measurements take place at baseline (entry of the study), after three months (end of the exercise program) and after six months (follow-up). Primary outcomes are cognitive functioning; psychomotor speed and executive functioning; (instrumental) activities of daily living, and quality of life. Secondary outcomes include physical, neuropsychological, and rest-activity rhythm measures.</p> <p>Discussion</p> <p>The EXERCISE-ON study is the first study to offer exercise programs to patients with early-onset dementia. We expect this study to supply evidence regarding the effects of exercise on the symptoms of early-onset dementia, influencing quality of life.</p> <p>Trial registration</p> <p>The present study is registered within The Netherlands National Trial Register (ref: NTR2124)</p

    A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy

    Get PDF
    The Double homeobox 4 (DUX4) gene is an important regulator of early human development and its aberrant expression is causal for facioscapulohumeral muscular dystrophy (FSHD). The DUX4-full length (DUX4-fl) mRNA splice isoform encodes a transcriptional activator; however, DUX4 and its unique DNA binding preferences are specific to old-world primates. Regardless, the somatic cytotoxicity caused by DUX4 expression is conserved when expressed in cells and animals ranging from fly to mouse. Thus, viable animal models based on DUX4-fl expression have been difficult to generate due in large part to overt developmental toxicity of low DUX4-fl expression from leaky transgenes. We have overcome this obstacle and here we report the generation and initial characterization of a line of conditional floxed DUX4-fl transgenic mice, FLExDUX4, that is viable and fertile. In the absence of cre, these mice express a very low level of DUX4-fl mRNA from the transgene, resulting in mild phenotypes. However, when crossed with appropriate cre-driver lines of mice, the double transgenic offspring readily express DUX4-fl mRNA, protein, and target genes with the spatiotemporal pattern of nuclear cre expression dictated by the chosen system. When cre is expressed from the ACTA1 skeletal muscle-specific promoter, the double transgenic animals exhibit a developmental myopathy. When crossed with tamoxifen-inducible cre lines, DUX4-mediated pathology can be induced in adult animals. Thus, the appearance and progression of pathology can be controlled to provide readily screenable phenotypes useful for assessing therapeutic approaches targeting DUX4-fl mRNA and protein. Overall, the FLExDUX4 line of mice is quite versatile and will allow new investigations into mechanisms of DUX4-mediated pathophysiology as well as much-needed pre-clinical testing of DUX4-targeted FSHD interventions in vivo

    Candidate Proteins, Metabolites and Transcripts in the Biomarkers for Spinal Muscular Atrophy (BforSMA) Clinical Study

    Get PDF
    Spinal Muscular Atrophy (SMA) is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1) gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets.To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches.A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2-12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS) and to a number of secondary clinical measures.A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites) and 44 urine metabolites. No transcripts correlated with MHFMS.In this cross-sectional study, "BforSMA" (Biomarkers for SMA), candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed to confirm these findings, demonstrate sensitivity to change with disease progression, and assess potential impact on clinical trial design.Clinicaltrials.gov NCT00756821

    TCRβ rearrangements without a D segment are common, abundant, and public

    Get PDF
    T cells play an important role in adaptive immunity. An enormous clonal diversity of T cells with a different specificity, encoded by the T cell receptor (TCR), protect the body against infection. Most TCRβ chains are generated from a V, D, and J segment during recombination in the thymus. Although complete absence of the D segment is not easily detectable from sequencing data, we find convincing evidence for a substantial proportion of TCRβ rearrangements lacking a D segment. Additionally, sequences without a D segment are more likely to be abundant within individuals and/or shared between individuals. Our analysis indicates that such sequences are preferentially generated during fetal development and persist within the elderly. Summarizing, TCRβ rearrangements without a D segment are not uncommon, and tend to allow for TCRβ chains with a high abundance in the naive repertoire

    TCRβ rearrangements without a D segment are common, abundant, and public

    No full text
    T cells play an important role in adaptive immunity. An enormous clonal diversity of T cells with a different specificity, encoded by the T cell receptor (TCR), protect the body against infection. Most TCRβ chains are generated from a V, D, and J segment during recombination in the thymus. Although complete absence of the D segment is not easily detectable from sequencing data, we find convincing evidence for a substantial proportion of TCRβ rearrangements lacking a D segment. Additionally, sequences without a D segment are more likely to be abundant within individuals and/or shared between individuals. Our analysis indicates that such sequences are preferentially generated during fetal development and persist within the elderly. Summarizing, TCRβ rearrangements without a D segment are not uncommon, and tend to allow for TCRβ chains with a high abundance in the naive repertoire

    The naive t-cell receptor repertoire has an extremely broad distribution of clone sizes

    Get PDF
    The clone size distribution of the human naive T-cell receptor (TCR) repertoire is an important determinant of adaptive immunity. We estimated the abundance of TCR sequences in samples of naive T cells from blood using an accurate quantitative sequencing protocol. We observe most TCR sequences only once, consistent with the enormous diversity of the repertoire. However, a substantial number of sequences were observed multiple times. We detect abundant TCR sequences even after exclusion of methodological confounders such as sort contamination, and multiple mRNA sampling from the same cell. By combining experimental data with predictions from models we describe two mechanisms contributing to TCR sequence abundance. TCRa abundant sequences can be primarily attributed to many identical recombination events in different cells, while abundant TCRb sequences are primarily derived from large clones, which make up a small percentage of the naive repertoire, and could be established early in the development of the T-cell repertoire
    corecore