1,018 research outputs found

    Relative entropy and the Bekenstein bound

    Full text link
    Elaborating on a previous work by Marolf et al, we relate some exact results in quantum field theory and statistical mechanics to the Bekenstein universal bound on entropy. Specifically, we consider the relative entropy between the vacuum and another state, both reduced to a local region. We propose that, with the adequate interpretation, the positivity of the relative entropy in this case constitutes a well defined statement of the bound in flat space. We show that this version arises naturally from the original derivation of the bound from the generalized second law when quantum effects are taken into account. In this formulation the bound holds automatically, and in particular it does not suffer from the proliferation of the species problem. The results suggest that while the bound is relevant at the classical level, it does not introduce new physical constraints semiclassically.Comment: 12 pages, 1 figure, minor changes and references adde

    Noninvasive ventilation weaning in acute hypercapnic respiratory failure due to COPD exacerbation : A real-life observational study

    Get PDF
    The most recent British Thoracic Society/Intensive Care Society (BTS/ICS) guidelines on the use of noninvasive ventilation (NIV) in acute hypercapnic respiratory failure (AHRF) suggest to maximize NIV use in the first 24 hours and to perform a slow tapering. However, a limited number of studies evaluated the phase of NIV weaning. The aim of this study is to describe the NIV weaning protocol used in AHRF due to acute exacerbation of chronic obstructive pulmonary disease (AE-COPD), patients' characteristics, clinical course, and outcomes in a real-life intermediate respiratory care unit (IRCU) setting. We performed a retrospective study on adult patients hospitalized at the IRCU of San Gerardo Hospital, Monza, Italy, from January 2015 to April 2017 with a diagnosis of AHRF due to COPD exacerbation. The NIV weaning protocol used in our institution consists of the interruption of one of the three daily NIV sessions at the time, starting from the morning session and finishing with the night session. The 51 patients who started weaning were divided into three groups: 20 (39%) patients (median age 80 yrs, 65% males) who completed the protocol and were discharged home without NIV (Completed Group), 20 (39%) did not complete it because they were adapted to domiciliary ventilation (Chronic NIV Group), and 11 (22%) interrupted weaning ex abrupto mainly due to NIV intolerance (Failed Group). Completed Group patients were older, had a higher burden of comorbidities, but a lower severity of COPD compared to Chronic NIV Group. Failed Group patients experienced higher frequency of delirium after NIV discontinuation. None of the patients who completed weaning had AHRF relapse during hospitalization. While other NIV weaning methods have been previously described, our study is the first to describe a protocol that implies the interruption of a ventilation session at the time. The application of a weaning protocol may prevent AHRF relapse in the early stages of NIV interruption and in elderly frail patients

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Attracting Manifold for a Viscous Topology Transition

    Full text link
    An analytical method is developed describing the approach to a finite-time singularity associated with collapse of a narrow fluid layer in an unstable Hele-Shaw flow. Under the separation of time scales near a bifurcation point, a long-wavelength mode entrains higher-frequency modes, as described by a version of Hill's equation. In the slaved dynamics, the initial-value problem is solved explicitly, yielding the time and analytical structure of a singularity which is associated with the motion of zeroes in the complex plane. This suggests a general mechanism of singularity formation in this system.Comment: 4 pages, RevTeX, 3 ps figs included with text in uuencoded file, accepted in Phys. Rev. Let

    On the statistical-mechanical meaning of the Bousso bound

    Full text link
    The Bousso entropy bound, in its generalized form, is investigated for the case of perfect fluids at local thermodynamic equilibrium and evidence is found that the bound is satisfied if and only if a certain local thermodynamic property holds, emerging when the attempt is made to apply the bound to thin layers of matter. This property consists in the existence of an ultimate lower limit l* to the thickness of the slices for which a statistical-mechanical description is viable, depending l* on the thermodynamical variables which define the state of the system locally. This limiting scale, found to be in general much larger than the Planck scale (so that no Planck scale physics must be necessarily invoked to justify it), appears not related to gravity and this suggests that the generalized entropy bound is likely to be rooted on conventional flat-spacetime statistical mechanics, with the maximum admitted entropy being however actually determined also by gravity. Some examples of ideal fluids are considered in order to identify the mechanisms which can set a lower limit to the statistical-mechanical description and these systems are found to respect the lower limiting scale l*. The photon gas, in particular, appears to seemingly saturate this limiting scale and the consequence is drawn that for systems consisting of a single slice of a photon gas with thickness l*, the generalized Bousso bound is saturated. It is argued that this seems to open the way to a peculiar understanding of black hole entropy: if an entropy can meaningfully (i.e. with a second law) be assigned to a black hole, the value A/4 for it (where A is the area of the black hole) is required simply by (conventional) statistical mechanics coupled to general relativity.Comment: 6 pages. Some editing and the addition of a reference. This version, ideally corresponding to the published one, contains 4 corrections to it, with two of them (p.3, line 19 and p.6, line 10 of this version) with semantic relevanc

    Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001

    Get PDF
    We report on a search for low-energy neutrino (antineutrino) bursts in correlation with the 8 time coincident events observed by the gravitational waves detectors EXPLORER and NAUTILUS (GWD) during the year 2001. The search, conducted with the LVD detector (INFN Gran Sasso National Laboratory, Italy), has considered several neutrino reactions, corresponding to different neutrino species, and a wide range of time intervals around the (GWD) observed events. No evidence for statistically significant correlated signals in LVD has been found. Assuming two different origins for neutrino emission, the cooling of a neutron star from a core-collapse supernova or from coalescing neutron stars and the accretion of shocked matter, and taking into account neutrino oscillations, we derive limits to the total energy emitted in neutrinos and to the amount of accreting mass, respectively.Comment: Accepted for publication in Astronomy and Astrophysic

    Study of single muons with the Large Volume Detector at Gran Sasso Laboratory

    Get PDF
    The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic Nuclei
    corecore